strassen矩阵乘法 java_使用java写的矩阵乘法实例(Strassen算法)

Strassen算法于1969年由德国数学家Strassen提出,该方法引入七个中间变量,每个中间变量都只需要进行一次乘法运算。而朴素算法却需要进行8次乘法运算。

原理

Strassen算法的原理如下所示,使用sympy验证Strassen算法的正确性

import sympy as s

A = s.Symbol("A")

B = s.Symbol("B")

C = s.Symbol("C")

D = s.Symbol("D")

E = s.Symbol("E")

F = s.Symbol("F")

G = s.Symbol("G")

H = s.Symbol("H")

p1 = A * (F - H)

p2 = (A + B) * H

p3 = (C + D) * E

p4 = D * (G - E)

p5 = (A + D) * (E + H)

p6 = (B - D) * (G + H)

p7 = (A - C) * (E + F)

print(A * E + B * G, (p5 + p4 - p2 + p6).simplify())

print(A * F + B * H, (p1 + p2).simplify())

print(C * E + D * G, (p3 + p4).simplify())

print(C * F + D * H, (p1 + p5 - p3 - p7).simplify())

复杂度分析

$$f(N)=7\times f(\frac{N}{2})=7^2\times f(\frac{N}{4})=...=7^k\times f(\frac{N}{2^k})$$

最终复杂度为$7^{log_2 N}=N^{log_2 7}$

java矩阵乘法(Strassen算法)

代码如下,可以看看数据结构的定义,时间换空间。

public class Matrix {

private final Matrix[] _matrixArray;

private final int n;

private int element;

public Matrix(int n) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

for (int i = 0; i < 4; i++) {

this._matrixArray[i] = new Matrix(n / 2);

}

} else {

this._matrixArray = null;

}

}

private Matrix(int n, boolean needInit) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

} else {

this._matrixArray = null;

}

}

public void set(int i, int j, int a) {

if (n == 1) {

element = a;

} else {

int size = n / 2;

this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a);

}

}

public Matrix multi(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element * m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m));

result._matrixArray[1] = P1(m).add(P2(m));

result._matrixArray[2] = P3(m).add(P4(m));

result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m));

}

return result;

}

public Matrix add(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element + m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);;

}

return result;

}

public Matrix minus(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element - m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);;

}

return result;

}

protected Matrix P1(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3]));

}

protected Matrix P2(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3]));

}

protected Matrix P3(Matrix m) {

return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P4(Matrix m) {

return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P5(Matrix m) {

return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3]));

}

protected Matrix P6(Matrix m) {

return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3]));

}

protected Matrix P7(Matrix m) {

return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1]));

}

public int get(int i, int j) {

if (n == 1) {

return element;

} else {

int size = n / 2;

return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size);

}

}

public void display() {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.print(get(i, j));

System.out.print(" ");

}

System.out.println();

}

}

public static void main(String[] args) {

Matrix m = new Matrix(2);

Matrix n = new Matrix(2);

m.set(0, 0, 1);

m.set(0, 1, 3);

m.set(1, 0, 5);

m.set(1, 1, 7);

n.set(0, 0, 8);

n.set(0, 1, 4);

n.set(1, 0, 6);

n.set(1, 1, 2);

Matrix res = m.multi(n);

res.display();

}

}

总结

到此这篇关于使用java写的矩阵乘法的文章就介绍到这了,更多相关java矩阵乘法(Strassen算法)内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值