python xgb模型 预测_Python 调用 PMML

本文介绍了如何使用Python的PMML进行模型部署,以实现跨平台的预测。通过PMML,可以在Java环境中部署由Python构建的XGB模型。文章详细讲述了如何利用openscoring进行模型的反向操作,包括安装maven、openscoring的步骤,以及如何启动Java服务和调用PMML文件进行预测。
摘要由CSDN通过智能技术生成

PMML(Predictive Model Markup Language全称是预测模型标记语言,好处在于PMML可以让模型部署环境脱离开发环境,实现跨平台部署,是PMML区别于其他模型部署方法最大的优点。平时主要使用Python建模,导出PMML后便于研发在Java生产环境中部署。为了便于后续线上线下模型校验,需要进反向操作,将已有的PMML文件还原成sklearn中的机器学习模型。

尝试以下方式:

  • jpmml-evaluator-python, 但一直无法尝试成功,"py4j.protocol.Py4JNetworkError: Answer from Java side is empty"
  • openscoring, 通过开启一个Java服务调用机器学习模型,客户端向服务端传递pmml模型文件和数据进行预测。

目前通过openscoring可以解决反向操作问题,支持Python调用pmml模型文件,具体安装方式如

  1. 下载安装maven,目前最新的是apache-maven-3.6.3-bin.tar.gz,解压。
  • Add the bin directory of the created directory apache-maven-3.6.3 to the PATH environment variable
  • 根目录下 vi .zshrc 末尾添加 export PATH=/Users/apache-maven-3.6.2/bin:$PATH source .zshrc
  • mvn -v 检查是否安装成功

2.下载openscoring到本地,同时下载下面文件到openscoring,并在当前路径

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值