matlab自动识别粗大误差,剔除粗大误差

本文介绍了matlab中三种常见的粗大误差识别方法:拉依达法、肖维纳特法和格拉布斯法。拉依达法以3倍标准偏差为标准判断,肖维纳特法通过设定概率判断,而格拉布斯法则基于正态分布的顺序统计量。此外,还提供了matlab代码示例,用于实现粗大误差的剔除。
摘要由CSDN通过智能技术生成

一、拉依达法

当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为:

?xi -x-‘?>3S

则该测量数据应舍弃。

这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。

取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在 x-‘一3S与x-‘ 十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。

另外,当测量值与平均值之差大于2倍标准偏差(即 ?xi -x-‘?> 2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。

拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。

二、肖维纳特法

进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi是可疑的,应予舍弃。判别范围由下式确定&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值