python程序最多可以开多少个线程_一个Python多线程运行实例

本文探讨了Python使用线程模块创建多线程,并分析了这对CPU使用率的影响。通过示例程序展示了当创建4个线程(与处理器核心数相等)时,由于全局解释器锁的存在,Python程序实际上只能使用一个CPU核心,从而限制了CPU资源的利用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f63ead649ff5356148c1ed2a24183cb7.png

20095cf862d9419305611446d855fef0.png
https://docs.python.org/3/library/concurrency.html

本文主要介绍Python的线程模块创建多个并发线程,并研究其对此计算机CPU使用率的影响。在撰写代码之前,先来看看这台计算机上可用的处理器数量,图中的处理器核数是1个处理器,2个核心以及4个逻辑处理器。这说明这台MacBook Pro笔记本有2个独立的完整的处理器核心,每个核心支持超线程,可以独立运行两个独立的应用程序。

e025fd00b769e04bb16ca11dcbc94a6e.png
CPU核心数目

这2个内核中的超线程并不意味着将获得双倍的性能。超线程利用处理器的未使用部分,如果一个线程暂停或不使用特定资源,则另一个线程可能能够使用它。在某些工作负载下,这可以提升整体性能改,但也依赖于具体应用程序。蓝色和红色图表显示了这些处理器的CPU利用率总百分比。在没有太多程序的时候,使用率保持在低位,图中显示闲置接近70%左右。

5fc984fa0fea96c76c2bebdb128b6624.png
CPU利用率

如果想单独查看每个处理器的CPU使用情况,可以通过单击任务管理器底部的打开资源监视器获取更多CPU信息。下面创建一个简短的示例程序,代码如下:

#!/usr/bin/env python3
""" Threads that waste CPU cycles """

import os
import threading

# a simple function that wastes CPU cycles forever
def cpu_waster():
    while True:
        pass

# display information about this process
print('n   Process ID: ', os.getpid())
print('Thread Count: ', threading.active_count())
for thread in threading.enumerate():
    print(thread)

for i in range(4):
    threading.Thread(target=cpu_waster).start()

# display information about this process
print('n  Process ID: ', os.getpid())
print('Thread Count: ', threading.active_count())
for thread in threading.enumerate():
    print(thread)
  

这里定义了一个简单的函数,叫做CPU waster,它其实一个while循环,没有做任何有用的工作,但运行该功能的线程将永远保持活跃并持续使用CPU资源。

运行程序,打印出有关的信息,包括进程ID号,进程中的线程总数,然后for循环打印有关每个线程的信息。之后的for循环创建并启动4个waster线程。我在这里启动了4个线程,因为这是该系统中处理器数量的全部。在启动这些线程后,程序再次打印出改进程相关信息。

可以看到操作系统为此进程分配了ID号62457,并且当该进程最初启动时,只有一个主要执行线程。然后,在启动4个CPU浪费线程后,进程ID是不变的,但现在程序总共有5个线程。当Python创建了每个线程时,操作系统给它们分配线程号,以及唯一的线程标识符号。

$ python multi-threads.py

  Process ID:  62457
Thread Count:  1
<_MainThread(MainThread, started 4492457408)>

  Process ID:  62457
Thread Count:  5
<_MainThread(MainThread, started 4492457408)>
<Thread(Thread-1, started 123145390870528)>
<Thread(Thread-2, started 123145396125696)>
<Thread(Thread-3, started 123145401380864)>
<Thread(Thread-4, started 123145406636032)>

现在,如果切换到任务管理器,可以看到与运行程序之前相比,整体CPU使用率有所增加。但总的来说,考虑到我有4个线程正在运行,利用率依然非常低。这是因为Python的全局解释器锁只允许其中一个线程在任何给定时刻实际执行。所以最多这个程序只能使用一个CPU资源。

cfa7969aca7d6e447c7ca9497f5ef13b.png

查看进程选项卡,看到一个名为Python3.6的进程,它与之前显示的相同进程ID号。同时线程列中有5个线程。在平均CPU列中这个处理使用了大概25%的CPU,这对应于使用计算机中4个逻辑处理器中的一个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值