java fst 入门 例子_FWT,FST入门

什么是 FWT

FWT 全称为 " 快速沃尔什变换: Fast Walsh Transform " 。可以用于解决位运算卷积的问题。

什么叫位运算卷积呢?我们考虑普通的卷积,即:

\[C_k=\sum_{i+j=k}A_iB_j

\]

位运算卷积就是下标为位运算的卷积(此处与和或用 C++ 记号,异或用\(\oplus\)):

\[\begin{aligned}\text{与卷积:}&C_k=\sum_{i\&j=k}A_iB_j\\\text{或卷积:}&C_k=\sum_{i|j=k}A_iB_j\\\text{异或卷积:}&C_k=\sum_{i\oplus j=k}A_iB_j\end{aligned}

\]

FWT

为了方便,以下我们假设所有向量长度都相等,为\(2\)的整幂,即长度\(n=2^m\)。高位以 0 补齐。

设一个向量\(A\)经过 FWT 之后得到了\(FWT(A)\), FWT 的最终目标就是满足:\(FWT(C)=FWT(A)\cdot FWT(B)\),其中的点乘表示向量的每一位相乘:\(A\cdot B=(A_0B_0,A_1B_1,...,A_iB_i,...)\)。

FWT 针对三种位运算有各自的处理方法:

或卷积

我们发现或运算存在如下的性质:

\[(j|i=i)\land (k|i=i)\Rightarrow (j|k)|i=i

\]

如果将二进制理解为一个 01 集合,我们就可以用集合并的方式理解上面的性质。发现这其实是一个伪分配律。

根据这个性质我们可以进行构造:

\[a_i=\sum_{j|i=i}A_j\\b_i=\sum_{j|i=i}B_j\\c_i=\sum_{j|i=i}C_j

\]

那么可以发现:

\[\begin{aligned}

a_ib_i

&=\sum_{j|i=i}A_j\times \sum_{k|i=i}B_k\\

&=\sum_{j|i=i}\sum_{k|i=i}A_jB_k\\

&=\sum_{(j|k)|i=i}A_jB_k\\

&=c_i

\end{aligned}

\]

这样做了对应乘法之后就可以得到\(c\),再进行一次逆变换就可以得到\(C\)。

因此问题变成了怎么进行这样的变换。

考虑一种分治(或者称为 DP )的做法:

\(f(i,j)\):满足仅有低\(i\)位可能与\(j\)不同的,且与\(j\)或后得到\(j\)的下标所对应的数的和。

或者可以被描述为:

\[f(i,j)=\sum_{\lfloor\frac k{2^i}\rfloor=\lfloor\frac j{2^i}\rfloor,k|j=j} a_k

\]

考虑如何进行转移,即从\(f(i-1)\)转移到\(f(i)\)。这种情况下只有第\(i\)位解除了限制。根据或的性质,如果第\(i\)位为 0 ,那么第\(i\)位或操作之后仍需要是 0 ,就只能从第\(i\)位为 0 的\(f(i,j)\)转移来;如果第\(i\)位为 1 ,那么第\(i\)位或操作总得到是 1 ,就可以不考虑第\(i\)位,从\(f(i,j)\)和\(f(i,j+2^i)\)转移来。

放个图片理解一下:

7fb7afd8cae78189bf157ef09bedaf20.png

顺便可以得到转移为:

正变换:

\[\begin{aligned}

f(i,j)&=f(i-1,j)\\

f(i,j+2^i)&=f(i-1,j)+f(i-1,j+2^i)

\end{aligned}

\]

逆变换就是将特殊贡献扣除:

\[\begin{aligned}

f(i,j)&=f(i+1,j)\\

f(i,j+2^i)&=f(i+1,j+2^i)-f(i+1,j)

\end{aligned}

\]

可以发现\(f(0,i)=A_i\),且这个转移可以滚动数组优化。

这样的 FWT 就是\(O(n\log_2n)\)。

与卷积

与卷积与或卷积十分相似,因此可以用类似的方法分析。这里只给出状态和转移:

\[f(i,j)=\sum_{\lfloor\frac k{2^i}\rfloor=\lfloor\frac j{2^i}\rfloor,k\&j=j} a_k

\]

正变换:

\[\begin{aligned}

f(i,j)&=f(i-1,j)+f(i-1,j+2^i)\\

f(i,j+2^i)&=f(i-1,j+2^i)

\end{aligned}

\]

逆变换:

\[\begin{aligned}

f(i,j)&=f(i+1,j)-f(i+1,j+2^i)\\

f(i,j+2^i)&=f(i+1,j+2^i)

\end{aligned}

\]

异或卷积

我们同样考虑异或的性质。

设\(count(i)\)为\(i\)的二进制中\(1\)的位数,\(i\otimes j=count(i\&j)\bmod 2\)则异或有性质:

\[(i\otimes j)\oplus(i\otimes k)=i\otimes (j\oplus k)

\]

即奇偶性相等。设\(count(j\&i)=a,count(k\&i)=b,count(j\&k\&i)=c\),则左侧奇偶性由\(a+b\)决定,右侧奇偶性由\(a+b-2c\)决定,可以发现两侧的奇偶性相等。

说起奇偶性,我们可以想到\(-1\)的幂。于是设:

\[\begin{aligned}

a_i=\sum_j(-1)^{i\otimes j}A_j\\

b_i=\sum_j(-1)^{i\otimes j}B_j\\

c_i=\sum_j(-1)^{i\otimes j}C_j

\end{aligned}

\]

然后就可以看看这样转换后乘起来的结果:

\[\begin{aligned}

a_ib_i

&=\sum_j(-1)^{i\otimes j}A_j\times \sum_k(-1)^{i\otimes k}B_k\\

&=\sum_{i\otimes j=0}\sum_{i\otimes k=0}A_jB_k-\sum_{i\otimes j=1}\sum_{i\otimes k=0}A_jB_k-\sum_{i\otimes j=0}\sum_{i\otimes k=1}A_jB_k+\sum_{i\otimes j=1}\sum_{i\otimes k=1}A_jB_k\\

&=\sum_{i\otimes (j\oplus k)=0}A_jB_k-\sum_{i\otimes (j\oplus k)=1}A_jB_k\\

&=\sum_p(-1)^{i\otimes p}\sum_{j\oplus k=p}A_jB_k\\

&=\sum_p(-1)^{i\otimes p}C_p\\

&=c_i

\end{aligned}

\]

我们达成了目的。接下来就看看怎么变换。继续考虑 DP :

\[f(i,j)=\sum_{\lfloor\frac k {2^i}\rfloor=\lfloor \frac j {2^i}\rfloor}(-1)^{j\otimes k}a_k

\]

可以发现,从\(f(i-1)\)转到\(f(i)\)的时候,只有第\(i\)位都是\(1\)才会令\(j\otimes k\)改变奇偶性,即多乘上一个 -1 。

这样转移,最终\(j\otimes k=0\)的情况就会被乘上偶数次 -1 ,而\(j\otimes k=1\)的情况就会被乘上奇数次 -1 ,最终答案就是正确的。

按照这样,正变换:

\[\begin{aligned}

f(i,j)&=f(i-1,j)+f(i-1,j+2^i)\\

f(i,j+2^i)&=f(i-1,j)-f(i-1,j+2^i)

\end{aligned}

\]

逆变换,用到了小学奥数的 " 和差问题 " 的结论:

\[\begin{aligned}

f(i,j)&=\frac{f(i+1,j)+f(i+1,j+2^i)} 2\\

f(i,j+2^i)&=\frac{f(i+1,j)-f(i+1,j+2^i)} 2

\end{aligned}

\]

需要注意的是,异或卷积的逆变换还有一个 " 类 FFT " 的写法,即逆变换只比正变换在最后多除一个\(n\)(事实上异或 FWT 和 FFT 有很多相似处,可以在 K 进制 FWT 中找到答案)。

例题

洛谷P4717。三种 FWT 全家桶。

参考代码:

const int mod = 998244353, inv2 = 499122177;

const int MAXSIZ = 5e5 + 5;

int A[MAXSIZ], B[MAXSIZ], C[MAXSIZ], a[MAXSIZ], b[MAXSIZ];

int N, M;

int fix( const int x ) { return ( x % mod + mod ) % mod; }

namespace OR

{

void FWT( int *f, const int m )

{

for( int s = 2 ; s <= M ; s <<= 1 )

for( int i = 0, t = s >> 1 ; i < M ; i += s )

for( int j = i ; j < i + t ; j ++ )

f[j + t] = fix( f[j + t] + f[j] * m ) % mod;

}

}

namespace AND

{

void FWT( int *f, const int m )

{

for( int s = 2 ; s <= M ; s <<= 1 )

for( int i = 0, t = s >> 1 ; i < M ; i += s )

for( int j = i ; j < i + t ; j ++ )

f[j] = fix( f[j] + f[j + t] * m ) % mod;

}

}

namespace XOR

{

void FWT( int *f, const int m )

{

int t1, t2;

for( int s = 2 ; s <= M ; s <<= 1 )

for( int i = 0, t = s >> 1 ; i < M ; i += s )

for( int j = i ; j < i + t ; j ++ )

{

t1 = f[j], t2 = f[j + t];

if( m > 0 )

f[j] = ( t1 + t2 ) % mod,

f[j + t] = fix( t1 - t2 );

else

f[j] = 1ll * ( t1 + t2 ) % mod * inv2 % mod,

f[j + t] = 1ll * fix( t1 - t2 ) * inv2 % mod;

}

}

}

void cal( void ( *fwt ) ( int*, int ) ) //函数指针的写法,主要是方便。

{

for( int i = 0 ; i < M ; i ++ ) A[i] = a[i], B[i] = b[i];

fwt( A, 1 ), fwt( B, 1 );

for( int i = 0 ; i < M ; i ++ ) C[i] = 1ll * A[i] * B[i] % mod;

fwt( C, -1 );

for( int i = 0 ; i < M ; i ++ ) write( C[i] ), putchar( i == M - 1 ? '\n' : ' ' );

}

FST

FST 怎么做

它听着不妙。

快速子集变换 FST 解决的是一类子集卷积的问题,即:

\[f(U)=\sum_{S,T\subseteq U, S\cup T=U, S\cap T=\varnothing} g(S)\times h(T)

\]

这个卷积和或卷积的区别在于,或卷积可以有交集(并不要求\(j\& k=0\)),然而子集卷积不可以有。

注意到这个限制在子集卷积中等价于\(|S|+|T|=|U|\)。因此我们可以给状态加上一维限制大小:

\(f(i,U)\):大小为\(i\)的集合\(U\)的所有子集的贡献,\(g\)和\(h\)同理转换。

这个信息可以直接用 FWT 正变换得到。

因此有转移:

\[f(i,U)=\sum_j^i\sum_{S\cup T=U}g(i,S)\times h(i-j,T)

\]

转移完成后需要 FWT 逆变换回来,再将不符合要求(集合大小不匹配)的清除。

例题

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值