为什么剩余数不能相加_中国剩余定理和大衍求一术

作为一个直接由中国命名的定理,中国剩余定理是中国古代数学在数论领域的最重要成果,也是数学主要分支的基础定理里少有被世界公认为属于中国的。值得说明的是,中国古代的数学家不仅给出了判定存在的中国剩余定理,还构建了用于求解对应方程的大衍求一术,这两项完整的构成了一次同余方程组的解的存在性理论和解的计算算法,可以说是完美解决了一次同余方程这个问题。这是中国古代数学的璀璨明珠。

知乎上对中国剩余定理介绍还挺多的,不过我还没看到过哪篇文章有完整的讲明白大衍求一术,甚至有些就误认为大衍求一术就是中国剩余定理本身。这篇文章就为大家介绍中国古代同余方程的完整理论。

鉴于知乎上类似内容非常多,我就不讲《九章算术》等的原文了,全文直接用现代数学语言叙述。


定理1(中国剩余定理) 对同余方程
两两互质, 则对任意
方程
有解, 且解在
的意义下唯一.

我们先给出一个非构造性证明,然后在本文后面将给出构造解.

证明:
存在性:记

. 考虑两个集合
,
.

显然
. 构造映射
.
是单射, 这是因为如果
, 则
, 于是
, 又
, 只可能是
.

, 因此
是双射, 存在逆映射. 从而
即是
的解.

唯一性:若
都是
的解, 则
, 于是
, 即
.

这个存在性证明,即“在两个等大有限集合间构造单射,从而得到双射”,是数论多个基本定理的共通性证明。

接下来,我们将给出

的构造解. 为此首先需要一个引理:
引理(大衍求一术的存在性定理版本)当
时, 方程
有整数解. 且解在
意义下是唯一的

这个定理也可以使用类似定理1的方式进行存在性证明. 我们先不去证明它, 之后我们将用大衍求一术给出这个方程的构造性解.

要指出的是, 引理所给出的解正是初等数论中极其重要的“数论倒数”, 也就是

在模
乘法群上的逆元.
定理2 同余方程
有显式解
, 其中
为方程
的解(由引理,这个解是存在的).

证明:直接验证即有

.

下面我们将进入本文的核心,也就是同余方程

的解法.

我们注意到, 求解

相当于找到一对整数
, 使得
, 而这显然和
裴蜀定理有相当大的关系, 裴蜀定理又牵扯到与最大公约数紧密相关的 更相减损术或称 欧几里得算法. 而 大衍求一术, 正是南宋数学家秦九韶在深入研究更相减损术后提出的利用更相减损术过程的算法. 我们首先回顾一下更相减损术
更相减损术/欧几里得算法 设有两数
, 在
之间不断作带余除法并取余数, 即
, 则算法将在有限步内因整除得到余数
而终止, 且终止前的最后一个非零余数就是
的最大公约数.

这个算法的证明可以使用递降法: 首先迭代过程保证了最大公约数不会变化, 且只要不出现

算法就能继续下去; 但每迭代一次数列
都是单调下降的, 因此必在有限步内终止; 终止前最后一步必然是
, 那么
就是
——进而由最大公约数在迭代中的不变性也是
的最大公约数.

由于带余除法

又可以写成
, 因此更相减损术每步生成的新数总是旧数的线性组合! 对线性代数熟悉的人马上就会意识到, 线性组合的复合仍然是线性组合, 因此最后的
也就可以由这一系列的线性组合所复合的线性组合来表示! 这就是大衍求一术的基本思想.

具体的, 设

,
, 则
,
,
,
, 且有

因此,只要我们对
进行一次更相减损术, 并在过程中同时计算
, 则对
, 一定会在某一步得到
. 于是我们就同时得到了
的解
的解
. 如果我们只想解其中一个方程, 那么不需计算全部四个数列,只需计算对应两个即可.
定理3(大衍求一术) 方程
依照如上算法可以给出算法解.

以上便是秦九韶给出的大衍求一术用现代语言叙述的结果。其原文如下

大衍求一术云︰置奇右上,定居右下,立天元一于左上。先以右上除右下,所得商数与左上一相生,入左下。然后乃以右行上下,以少除多,递互除之,所得商数随即递互累乘,归左行上下。须使右上末后奇一而止,乃验左上所得,以为乘率。(《数书九章·大衍类》南宋·秦九韶)

我们用一个实例

来解释一下秦九韶的话.

秦九韶称

为“奇数”,
为“定母”.(这两个名称来自他求解同余方程组的过程)“
置奇右上,定居右下,立天元一于左上”就是这个方阵
.

然后对右边做带余除法, 第一次有
, 余数替换掉原数, 第一次的商置于左下,即“
所得商数与左上一相生,入左下
.

再做带余除法,
, 依然余数替换掉原数, 然后用商乘以左下再与左上相加, 所得结果替换掉左上原数, 即“
所得商数随即递互累乘,归左行上下

以下,有

最终右上角出现了
, 同时左上角得到了
, 就有
.

中国古代数学体系中尚未出现负数,方阵的左下角其实是

(为正数). 这也是为什么秦九韶指明了“
须使右上末后奇一而止”, 因为左下其实是
的解. 如果右下先出现了
, 那么按秦九韶, 就再做一次除法让右上角变成
, 不过我们现代再应用时直接给左下取个反就行了.

同时中国古代数学也没有真正的
, 因此初始方阵中左下角是空的, 现代应用时可以直接写个
上去表明本质.

在中国古代数学的正数体系中这个算法只能处理
的情况,
时要先做一次
.

综上, 我们叙述完了中国古代数学的同余方程理论. 这个理论难能可贵的是它完美符合现代数学对“方程问题的解理论”的期望:存在性理论(只要互质必然存在)、解的性质(在模

意义下唯一)以至于解的结构(构造解,大衍求一术). 这也有力证明了中国古代数学不是“不求甚解”“流于表面”的玄学, 更多的说, 后世中国数学的停滞大概归因于历史的偶然性, 而不是过多的“必然性”“根本缺陷”.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值