MATLAB的full,将稀疏矩阵转换为满存储

本文探讨了MATLAB中稀疏矩阵的表示及其与满存储矩阵的区别。通过创建一个8x8的0.3密度随机稀疏矩阵S,展示了稀疏矩阵仅显示非零元素的特点。接着,将稀疏矩阵转换为满存储矩阵A,对比了两者在存储空间上的差异。满存储矩阵A占用512字节,而稀疏矩阵S仅占用312字节,表明稀疏存储在处理大量零元素时更节省空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更改矩阵的存储格式,并比较存储要求。

创建一个随机稀疏矩阵。在 MATLAB® 中,稀疏矩阵的显示会忽略所有零,只显示非零元素的位置和值。

rng default %for reproducibility

S = sprand(8,8,0.3)

S =

(2,1) 0.0344

(7,1) 0.4456

(8,1) 0.7547

(2,2) 0.4387

(4,3) 0.7655

(7,3) 0.6463

(8,4) 0.2760

(1,6) 0.9502

(5,6) 0.1869

(8,6) 0.6797

(3,7) 0.3816

(4,7) 0.7952

(8,7) 0.6551

(6,8) 0.4898

(7,8) 0.7094

将矩阵转换为满存储。矩阵的 MATLAB 显示会反映新存储格式。

A = full(S)

A = 8×8

0 0 0 0 0 0.9502 0 0

0.0344 0.4387 0 0 0 0 0 0

0 0 0 0 0 0 0.3816 0

0 0 0.7655 0 0 0 0.7952 0

0 0 0 0 0 0.1869 0 0

0 0 0 0 0 0 0 0.4898

0.4456 0 0.6463 0 0 0 0 0.7094

0.7547 0 0 0.2760 0 0.6797 0.6551 0

比较两种格式的存储要求:

A 存储 64 个双精度值(每个值使用 8 个字节),占用 64⋅8=512 个字节。

S 存储 15 个非零元素以及 24 个说明其位置的整数,总共占用 39⋅8=312 个字节。

whos

Name Size Bytes Class Attributes

A 8x8 512 double

S 8x8 312 double sparse

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值