题目:在翻转有序中搜索
难度:Medium
题目内容:
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
翻译:
假设一个按升序排序的数组在事先不知道旋转点的情况下翻转。
(即。0,1,2,4,5,6,7可能变成4,5,6,7,0,1,2)。
您获得了搜索的目标值。如果在数组中找不到它的索引,否则返回-1。
数组中不存在重复。
您的算法的运行时复杂度应该为O(log n)
我的思路:要复杂度O(log n),但是数组只是基本有序,而排序算法的最佳情况也要O(N),本弱鸡想不出什么很好方法。。。
那就强行上吧,先插入排序一波,再二分法搜索。
然而最后要返回下标,再排序后下标会发生变化,所以再新建一个数组存储下标,在排序过程中,此数组相应的值跟着一起移动。
MyCode:
1 public int search(int[] nums, inttarget) {2 int[] index = new int[nums.length];3 for (int i = 0; i < nums.length; i++) {4 index[i] =i;5 }6 insertSort(nums, index);7 returnbinaryFind(nums, target, index);8 }9
10 static int binaryFind(int[] nums, int target, int[] index) {11 int low = 0;12 int high = nums.length - 1;13 while (low <=high) {14 int mid = low + (high - low)/2;15 if (nums[mid] ==target) {16 returnindex[mid];17 } else if (nums[mid] >target) {18 high = mid - 1;19 } else{20 low = mid + 1;21 }22 }23 return -1;24 }25
26 static void insertSort(int[] nums, int[] index) {27 for (int i = 1; i < nums.length; i++) {28 int temp =nums[i];29 int temp2 =index[i];30 int j = i - 1;31 while (j > -1 && nums[j] >temp) {32 nums[j+1] =nums[j];33 index[j+1] =index[j];34 j--;35 }36 nums[j+1] =temp;37 index[j+1] =temp2;38 }39 }
我的算法复杂度:O(N2),因为插入排序的最坏情况就是O(N2)。
编码过程中出现的问题:
1、把插入排序的逻辑给忘了。。
答案代码:
1 public int search(int[] A, inttarget) {2 int n =A.length;3 int lo=0,hi=n-1;4 while(loA[hi]) lo=mid+1;7 else hi=mid;8 }9 int rot=lo;10 lo=0;hi=n-1;11 while(lo<=hi){12 int mid=(lo+hi)/2;13 int realmid=(mid+rot)%n;14 if(A[realmid]==target)returnrealmid;15 if(A[realmid]
答案复杂度:O(logN)
答案思路:首先利用数组局部仍然有序的特点,和 A[mid]>A[hi] 的条件,以二分法定位到最小的那一个值的下标,注意当 A[mid]<=A[hi] 的时候,应该是hi=mid,因为此时的mid有可能就是最小点,所以不能放过。【当要求的点不是直接定位的mid的时候(等循环结束),mid 有可能就是最终的值,下一层的 lo 和 hi 的取值不能都把mid排除, 其中一个就是mid】
找到最小点后,记录下来,然后继续对原数组进行二分法搜索,然而,参与比较的mid应该改成realMid=(mid+rot)%n
以[4,5,6,7,0,1,2]为例,找到最小值(真起点)0的下标4后,取mid=(0+6)/2 = 3,而真正的中点下标应该等于(mid+rot)%n = (3+4)%7 = 0
之后的向左右移动是一样的,所以还是变化mid的值即可。