[TOC]
本文章内,若无特殊说明,数字指的是整数,除法指的是整除。
什么是逆元
我们称$a$是$b$在模$p$情况下的逆元,则有$a \times b \equiv 1 ( mod,,p)$。 所以呢,我们其实可以将逆元看成一个数的相反数。所以在除以一个数的时候,就相当于乘上它的相反数。
如何求逆元
我们先来看看什么情况下有逆元。
当且仅当$gcd(b,p)=1$时,$b$在模$p$情况下有逆元。
这个结论可由裴蜀定理显然推得,下面一段来自百度百科,若读者对证明有兴趣,可以自行了解。
裴蜀定理(或贝祖定理,Bézout's identity)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数$a$、$b$和它们的最大公约数$d$,关于未知数$x$和$y$的线性不定方程(称为裴蜀等式):若$a$,$b$是整数,且$(a,b)=d$,那么对于任意的整数$x$,$y$,$ax+by$都一定是$d$的倍数,特别地,一定存在整数$x$,$y$,使$ax+by=d$成立。
拓展欧几里得求逆元
下面介绍如何用拓展欧几里得求逆元。
我们求$b$在模$g$意义下的逆元,根据$a \times b \equiv 1 ( mod,,p)$,得到$a\times b + k\times p = 1$。 我们知道,$gcd(b,p)=gcd(p,b % p)$,所以$a'\times p+k'\times (b % p)=1$同样有解。而由于$gcd(b,p)=1$,辗转相除法时,总有$a''\times 1 + k'' \times 0 = 1$。 此时我们不妨令$a''=1,k''=0$。 现在我们考虑怎么推回去。 $$ a'\times p+k'\times (b % p)=1 $$
$$ \Rightarrow a'\times p+k'\times( b-\left \lfloor \frac{b}{p} \right \rfloor \times p)=1 $$
$$ \Rightarrow k'\times b+(a'-\left \lfloor \frac{b}{p} \right \rfloor \times k') \times p=1 $$
与$a\times b + k\times p = 1$对照,得到$a=k',,,,k=a'- \left \lfloor \frac{b}{p} \right \rfloor\times k'$。那么这样,我们就得到了$a\times b + k\times p = 1$的一组解,同时,$a$就是$b$在模$p$下的逆元。 附C++程序
#include
using namespace std;
void ExPower( int b, int p, int & a, int & k ) {
if( p == 0 ) {
a = 1; k = 0;
return;
}
ExPower( p, b % p, k, a );
k -= b / p * a;
return;
}
int main() {
int b, p;
cin >> b >> p;
int a, k;
ExPower( b, p, a, k );
if( a < 0 ) a += p;
cout << a << endl;
return 0;
}
费马小定理求逆元
我们知道,当$p$为素数,并且$gcd(a,p)=1$时,我们有$a^{p-1} \equiv 1 (mod,,p)$。那么我们就有$a^{p-2}\times a \equiv 1(mod ,, p)$。所以逆元就是$a^{p-2}$了。
阶乘逆元
如果我们需要求$0!$到$n!$的逆元,对于每个元素都求一遍,就显得有点慢。(虽然$exPower$的时间快到可以认为是小常数。) 前面我们说了,逆元就可一看做是求倒数。那么不就有$\frac{1}{(n+1)!}\times (n+1)=\frac{1}{n!}$。 附C++程序:
int inv( int b, int p ) {
int a, k;
exPower( b, p, a, k );
if( a < 0 ) a += p;
return a;
}
void init( int n ) {
Fact[ 0 ] = 1;
for( int i = 1; i <= n; ++i ) Fact[ i ] = Fact[ i - 1 ] * i % Mod;
INV[ n ] = inv( Fact[ n ], Mod );
for( int i = n - 1; i >= 0; --i ) INV[ i ] = INV[ i + 1 ] * ( i + 1 ) % Mod;
return;
}
线性求逆元
按照上面的方法,如果我们要求$1$到$p-1$关于$p$的逆元,而$p$较大时,时间复杂度有点吃不消。而我们有一种更强的做法,可以在$O(p)$的时间内解决。
对于当前的$i$,我们设$p=k\times i+r$。于是: $$ \begin{aligned} k \times i + r & \equiv 0 &,,(mod ,, p) \ k \times i \times ( i^{-1} \times r ^{-1}) + r \times (i^{-1} \times r^{-1}) &\equiv 0 &,,( mod ,, p) \ k \times r^{-1} + i ^ {-1} & \equiv 0 &,, (mod ,, p)\ i^{-1} & \equiv -k \times r^{-1} &,, (mod ,, p) \ i^{-1} & \equiv - \left \lfloor \frac{p}{i}\right \rfloor \times r^{-1} &,,(mod,,p) \end{aligned} $$ 所以代码就大致如下:
Inv[ 1 ] = 1;
for( int i = 2; i <= n; i++ )
Inv[ i ] = ( p - p / i ) * Inv[ p % i ] % p;