i − 1 ∗ i ≡ 1 ( m o d p ) {\LARGE i^{-1}*i\equiv1 \pmod{p} } i−1∗i≡1(modp)
p = k ∗ i + r ( k = ⌊ p i ⌋ ) ( r = p m o d i ) \LARGE p=k*i+r(k=\left \lfloor \frac{p}{i} \right \rfloor ) (r=p \bmod i) p=k∗i+r(k=⌊
i − 1 ∗ i ≡ 1 ( m o d p ) {\LARGE i^{-1}*i\equiv1 \pmod{p} } i−1∗i≡1(modp)
p = k ∗ i + r ( k = ⌊ p i ⌋ ) ( r = p m o d i ) \LARGE p=k*i+r(k=\left \lfloor \frac{p}{i} \right \rfloor ) (r=p \bmod i) p=k∗i+r(k=⌊