二维burgers方程_二维Burgers方程的RKDG有限元解法

第30卷 第3期 2013年06月 工 程 数 学 学 报 CHINESE JOURNAL OF ENGINEERING MATHEMATICS Vol. 30 No. 3 June 2013 doi:10.3969/j.issn.1005-3085.2013.03.015 文章编号:1005-3085(2013)03-0442-09 二维Burgers方程的RKDG有限元解法∗ 马艳春1, 张寅虎2, 冯新龙1 (1- 新疆大学数学与系统科学学院,乌鲁木齐 830046; 2- 咸阳师范学院数学系,咸阳 712000) 摘 要: 本文应用RKDG有限元方法求解具有周期边界条件的二维非粘性Burgers方程,并给出稳定性分析和误差估计.基于一致网格剖分,采用Q1 矩形元和广义斜率限制器进行数值模拟.在相同网格剖分下与三角元相比,矩形元剖分的自由度较少,计算复杂度低,易于实现. 关键词: Burgers方程;RKDG有限元方法;矩形元;数值通量 分类号: AMS(2000) 65M06; 65M12 中图分类号: O241.82 文献标识码: A 1 众所周知,Burgers方程是最简单的非线性对流扩散数学模型,由于该方程的定解问题常常伴有激波产生,故要很好地求解它具有一定的难度.因此,研究对于Burgers方程 的高效数值计算方法具有重要的理论意义和应用价值. 间断Galerkin有限元方法(简称DG方法)是1973年由Reed和Hill[1] 最先提出,它是采用完全间断基函数的有限元方法,与传统有限元方法相比,DG方法具有很大的灵活性.例如可以采用任意的网格剖分,可以在每个网格中随意改变多项式的次数而不影响其它网格.由于Runge-Kutta间断Galerkin有限元方法(简称RKDG方法)[2-12] 计算简单, 易于编程实现,以及能很好地保持某些物理特性而得到广泛的应用.本文研究具有周期边界条件的二维非粘性Burgers方程 ∂u ∂t + ∇ · ~ f(u) = 0, (0,T] × Ω, (1) 初始条件为 u(t = 0,x,y) = u0(x,y), (x,y) ∈ Ω, (2) 其中u = u(t,x,y)为标量,~ f(u) = (u2 2 , u2 2 )T 为向量,区域Ω = [−1,1] × [−1,1],T 为有 限时间. 目前,问题(1)–(2)在大多数情况下都采用三角元网格剖分数值求解[6,9],但推广到三维情形较为困难.而在相同网格剖分下矩形元所需计算的未知量总数相对要少,计算复杂度低,易于实现和推广到高维情形,所以在本文中,我们将给出矩形元的算法,基于一致网格剖分,采用Q1 矩形元和广义斜率限制器进行数值模拟. 收稿日期: 2011-05-30. 作者简介: 马艳春(1983年7月生),女,硕士. 研究方向:偏微分方程数值解. ∗基金项目: 国家自然科学基金(61163027; 10901131);新疆科技厅特培基金(201123117);新疆大学自然科学基金(XY080102). 第3期 马艳春,等:二维Burgers方程的RKDG有限元解法 443 2 首先对区域Ω进行网格剖分,将x轴方向剖分成N 个小区间,节点为 −1 = x1 2 < x3 2 < ··· < xN+1 2 = 1, 将y 轴方向剖分成N 个小区间,节点为 −1 = y1 2 < y3 2 < ··· < yN+1 2 = 1. 定义 ∆xi = xi+1 2 − xi−1 2 , ∆yj = yj+1 2 − yj−1 2 , h =

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值