# 导入tushare
import tushare as ts
# 初始化pro接口
pro = ts.pro_api('')
data = pro.query('stock_basic', exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date')
#
# print(data)
# # print(data['symbol'] + ':' + data['ts_code'] + ':' + data['name'])
# print('A股所有股票数:' + str(len(data)))
# print(type(data))
# print(type(data['ts_code']))
# print(data['ts_code'][0])
# print(data['ts_code'][1])
# print(data['name'][0])
# print(data['name'][1])
# print('*********************')
start_date = '20170101'
end_date = '20200101'
for i in range(5):
print('++++++++++++++++++++++++++++++++++++++')
print(data['name'][i] + ':' + data['ts_code'][i])
# 拉取数据
df = pro.daily(**{
"ts_code": data['ts_code'][i],
"trade_date": "",
"start_date": start_date,
"end_date": end_date,
"offset": "",
"limit": ""
}, fields=[
"ts_code",
"trade_date",
"open",
"high",
"low",
"close",
"pre_close",
"change",
"pct_chg",
"vol",
"amount"
])
# 拉取数据
nowPriec = pro.daily(**{
"ts_code": data['ts_code'][i],
"trade_date": "",
"start_date": 20200106,
"end_date": 20200106,
"offset": "",
"limit": ""
}, fields=[
"close"
])
# print(df)
# print(type(df))
print('max price.mix price:')
# print(max(df['close']))
# print(min(df['close']))
print(max(df['close']))
print(min(df['close']))
# print('percent: {:.2%}'.format(42 / 50))
# (max(df['close'])-min(df['close']))/max(df['close'])
print('涨跌幅 percent: {:.2%}'.format((max(df['close'])-min(df['close']))/min(df['close'])))
print('最高点最低点的涨跌幅')
# print(nowPriec)
print(float(nowPriec['close']))
# print(type(nowPriec))
print('涨幅: {:.2%}'.format((max(df['close']) - float(nowPriec['close'])) / float(nowPriec['close'])))
print('跌幅: {:.2%}'.format((min(df['close']) - float(nowPriec['close'])) / float(nowPriec['close'])))
[034量化交易] python计算股票涨跌幅比例
最新推荐文章于 2025-01-17 17:33:32 发布