节点存储文件
neo4j有一个节点存储文件,用来存储节点的记录,文件名为neostore.nodestore.db
节点记录的长度是固定大小(9字节)
格式为:Node:inUse+nextRelld+nextPropld
image
inUse: 1 表示该节点正常使用, 0 表示该节点被删除
nextRelId: 该节点的下一个关系 id
nextPropId:该节点的下一个属性id
可以将存储记录看成是下面的样子
Node[0,used=true,rel=9,prop=-1]
Node[1,used=true,rel=1,prop=0]
Node[2,used=true,rel=2,prop=2]
Node[3,used=true,rel=2,prop=4]
Node[4,used=true,rel=4,prop=6]
所以如果我们想要查询id为100的节点,就可以准确的知道该节点记录在存储文件的第900字节,
基于这种查找方式,数据库可以直接计算出节点的位置,也就是O(1)的效率,而不是像关系型数据库O(log(n))的效率
关系存储文件
对应的也有一个关系存储文件,用来存储关系的记录.文件是neostore.relationshipstore.db,长度也是固定的
关系长度(33字节)
格式为:
Relationship:inUse+firstNode+secondNode+relType+firstPrevRelId+firstNextRelId+secondPrevRelId+secondNextId+nextProId
image
inUse: 1 表示该关系正常使用, 0 表示该关系被删除
firstNode:当前关系的起始节点
secondNode:当前关系的终止节点
relType:关系的类型
firstPrevRelId & firstNextRelId :起始节点前一个关系和后一个关系的Id
secondPrevRelId & secondNextId : 终止节点前一个关系和后一个关系的Id
nextProId: 该关系的下一个属性id
关系记录可以看成下面的方式
Relationship[0,used=true,source=1,target=0,type=0,sPrev=1,sNext=-1,tPrev=3,tNext=-1,prop=1]
Relationship[1,used=true,source=2,target=1,type=1,sPrev=2,sNext=-1,tPrev=-1,tNext=0,prop=3]
Relationship[2,used=true,source=3,target=2,type=2,sPrev=-1,sNext=-1,tPrev=-1,tNext=1,prop=5]
属性的存储
属性记录的物理存放位置是neostore.propertystore.db文件中,属性的存储也是固定长度(不过不用担心长度不够,长度不够的时候会去申请动态存储),每个属性记录包含4个属性块和属性链中下一个属性的id.属性链是单向链表,关系链是双向链表.因为neo4j是基于java开发,所以一个属性记录中可以包含任何java虚拟机(JVM)支持的基本数据类型/字符串/数组/属性索引文件(neostore.propertystore.db.index).属性索引文件主要用于存储属性的名称,属性索引的值部分存储的是指向动态内存的记录(长度不够存储的时候会去申请动态内存,并放在动态存储文件中)或内联值.
image
inUse: 1 代表正常使用的属性, 0 已经删除的属性
keyindexId:属性id
nextProId:下一个属性的id , 单向链表
propBlock:存储长度 29-5 = 24 个字节长度
动态存储分类
动态存储,是属性存储长度不足时需要用到的存储文件
分类:1.动态字符串存储 2.动态数组存储
如果一条数据长到一个动态存储仍无法完全容纳时,可以申请多个动态存储记录逻辑上进行连接
总结:
Neo4j数据库有一个.id文件保持对未使用记录的跟踪,用来回收未使用记录占用的空间,节点和关系存储文件只关心图的基本存储结构而不是属性数据,这两种记录都是固定大小,从而达到高性能遍历的关键设计决策.几点记录和关系记录都是相当轻量级的,由指向联系和属性列表的指针构成
一个节点的所有属性被记录到一个单向链表上面.只有指向下一个属性的指针,没有指向上一个属性的指针
两个节点之间的所有关系被记录到一个双向链表上面,既有指向上一个关系的指针,也有指向下一个关系的指针
节点存储文件和关系存储文件都是固定长度,只关心结构,不关心属性数据,属性存储文件也是固定长度,只关心数据,不关心结构.当长度不足时,会去申请动态存储,将超出的数据长度存放在动态存储里面,并将地址存放在属性存储文件中.查找的时候进行拼接