java iv不是内部命令_IV 估计:工具变量不外生时也可以用!

Note: 助教招聘信息请进入「课程主页」查看。因果推断-内生性 专题 ⌚ 2020.11.12-15

主讲:王存同 (中央财经大学);司继春(上海对外经贸大学)空间计量 专题 ⌚ 2020.12.10-13

主讲:杨海生 (中山大学);范巧 (兰州大学)

1. 引言

工具变量 (IV) 估计是处理内生性问题的基本方法,在经济学实证研究中有着极为广泛的应用。

一个合格的工具变量需要同时满足以下两个条件:第一,相关性,即工具变量应该与内生变量相关;

第二,外生性,即工具变量应该与扰动项不相关。

其中,第二个条件也被称为 排他性约束 (exclusion restriction), 因为该条件意味着工具变量只能通过内生变量对被解释变量产生影响,而不能有其他影响路径或渠道。

那么,如何检验好不容易找到的工具变量是否较好地满足了这两个条件呢?

对于 相关性条件,它是可以直接验证的 (比如,考察第一阶段回归的 F 统计量),通常容易满足 (当然,如果深究的话,也不是件容易检验的事情,否则也不会有那么多计量经济学家苦心钻研 弱工具变量 问题了)。然而,对于外生性,这个条件是不易检验的,对于使用 IV 估计的实证研究而言,工具变量的外生性常常成为审稿人质疑的焦点,也是研究者集中讨论的难点。

2. 外生性检验和过度识别检验

在「恰好识别」的情况下 (工具变量的个数等于内生变量的个数),目前公认无法从统计上检验工具变量的外生性,只能进行定性讨论或者依赖于专家的意见 (用前期大牛的文献作为 挡箭牌 或 尚方宝剑),这就意味着我们需要花费较多的篇幅来从理论上为工具变量的外生性进行辩护。定性讨论通常基于以下逻辑:如果工具变量是外生的,则其对被解释变量发生影响的唯一渠道就是通过内生变量,除此以外别无其他渠道。在实际操作中,则需要找出工具变量影响被解释变量的所有其他可能渠道,然后一一排除,才能比较信服地说明工具变量的外生性。显然,这并非易事。

在「过度识别」的情况下(工具变量的个数大于内生变量的个数),我们可以执行「过度识别检验」 (overidentification test) 。该检验的原假设为:H0: 所有的工具变量都是外生的。

如果结果拒绝了该原假设,则说明至少有一个工具变量不是外生的。

值得注意的是,“过度识别检验” 难以在恰好识别的情况下使用,而且无论使用何种过度识别检验,都有一个不检验的大前提 (maintained hypothesis) ,即模型至少是恰好识别的。因此,即使检验结果接受了“所有工具变量皆外生”的原假设,也并不表示就验证了所有工具变量的外生性。它只是表明,在模型恰好识别的情况下,多余的那些工具变量也是外生的。

总之,根据目前的计量经济学,工具变量的外生性在本质上依然是不可检验的,学者们通常需要使用各种理论和实证依据以及花费大量的时间和精力向读者证明,他们使用的工具变量能够满足排他性约束。但是如果做了很多努力仍有人怀疑你的 IV 不够外生时应该怎么办?是否存在一些方法补救这里的不完全外生问题?此时,我们可能就需要学会使用工具变量是近似外生时的 IV 估计。

3. 近似外生 IV 下的稳健推断

工具变量完全外生的情形毕竟只是一种理想状态,现实中的工具变量更可能存在轻微的内生性。近年来,越来越多的计量经济学家开始放松传统 IV 估计的模型设定,讨论近似外生工具变量下的稳健推断方法。针对工具变量外生性条件无法严格满足的情形,目前较有影响的做法是采用再抽样 (resampling,Berkowitz et al.,2012) 或贝叶斯的方法校正近似外生性的影响 (Conley et al., 2012;Kraay, 2012) 。本文主要介绍 Conley et al. (2012) 提出的方法,Conley et al.(2012) 将严格的排他性约束替换为工具变量对于被解释变量存在一定的影响,其参数具有某个取值范围 (support) 或先验分布 (prior distribution),然后根据参数的先验信息构造出回归系数的置信区间,以检验在工具变量非完全外生时估计结果的稳健性。

如果放松排他性约束假定,传统线性 IV 模型可以写成如下形式:

equation?tex=%5Cmathbf%7BY%7D%3D%5Cmathbf%7BX%7D+%5Cboldsymbol%7B%5Cbeta%7D%2B%5Cmathbf%7BZ%7D+%5Cboldsymbol%7B%5Cgamma%7D%2B%5Cvarepsilon+++%5Ctag%7B1%7D+%5C%5C

equation?tex=%5Cmathbf%7BX%7D%3D%5Cmathbf%7BZ%7D+%5CPi%2B%5Cmathbf%7BV%7D+++%5Ctag%7B2%7D+%5C%5C

在式 (1) 和式 (2) 中,

equation?tex=%5Cmathbf%7BY%7D 是结果变量,

equation?tex=%5Cmathbf%7BX%7D 是内生变量矩阵,

equation?tex=%5Cmathbf%7BZ%7D 是工具变量矩阵。

equation?tex=%5Cvarepsilon

equation?tex=%5Cmathbf%7BV%7D 是扰动项。如果工具变量

equation?tex=%5Cmathbf%7BZ%7D 仅通过内生变量

equation?tex=%5Cmathbf%7BX%7D 影响

equation?tex=%5Cmathbf%7BY%7D (即满足排他性约束),则在上式中,

equation?tex=%5Cboldsymbol%7B%5Cgamma%3D0%7D。如果

equation?tex=%5Cboldsymbol%7B%5Cgamma+%5Cneq+0%7D,则表明

equation?tex=%5Cmathbf%7BZ%7D 存在内生性。如果

equation?tex=%5Cboldsymbol%7B%5Cgamma%7D 接近于0,即

equation?tex=%5Cboldsymbol%7B%5Cgamma+%5Capprox+0%7D,则说明工具变量

equation?tex=%5Cmathbf%7BZ%7D 存在轻微的内生性,被 Conley et al. (2012) 称为“近乎外

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值