基于Rank优化的并查集
- Rank就是每棵子树的高度;
- 在基于size的优化的并查集中有一个问题:size小的子树的高度并一定就一定小于size大的树,size大的子树的高度可能就是2,size小的子树的高度也可能大于2;
- 合并时的优化的目的是合并后的树的高度最小,树的高度越小,查找时的路劲就越短,速度响应也越快;
- 因此用表示每棵子树的高度的数组rank代替表示每棵子树节点多少的数组size;
public class UnionFind4 implements UF {
private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数
private int[] parent; // parent[i]表示第i个元素所指向的父节点
// 构造函数
public UnionFind4(int size){
rank = new int[size];
parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < size ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while(p != parent[p])
p = parent[p];
return p;
}
}
基于Rank优化后的合并操作
- 合并的时候,哪棵树的rank小,把哪棵树合并于rank大的树,合并完了不用更新rank大的树的rank值,因为rank小的树的高度最大比rank大的树的rank小1,合并为完了rank小的树的“脚”不会伸出来;
- 只有两棵树的rank值相等,容纳另一颗树的rank值需要加1;
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的rank不同判断合并方向
// 将rank低的集合合并到rank高的集合上
if(rank[pRoot] < rank[qRoot])
parent[pRoot] = qRoot;
else if(rank[qRoot] < rank[pRoot])
parent[qRoot] = pRoot;
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
性能比较
import java.util.Random;
public class Main {
private static double testUF(UF uf, int m){
int size = uf.getSize();
Random random = new Random();
long startTime = System.nanoTime();
for(int i = 0 ; i < m ; i ++){
int a = random.nextInt(size);
int b = random.nextInt(size);
uf.unionElements(a, b);
}
for(int i = 0 ; i < m ; i ++){
int a = random.nextInt(size);
int b = random.nextInt(size);
uf.isConnected(a, b);
}
long endTime = System.nanoTime();
return (endTime - startTime) / 1000000000.0;
}
public static void main(String[] args) {
int size = 10000000;
int m = 10000000;
UnionFind3 uf3 = new UnionFind3(size);
System.out.println("UnionFind3 : " + testUF(uf3, m) + " s");
UnionFind4 uf4 = new UnionFind4(size);
System.out.println("UnionFind4 : " + testUF(uf4, m) + " s");
}
}
输出:
- 测试结果不是很明显;
UnionFind3 : 5.7852983 s
UnionFind4 : 5.402423 s