并查集 05 基于子集合rank的优化

基于Rank优化的并查集

  • Rank就是每棵子树的高度;
  • 在基于size的优化的并查集中有一个问题:size小的子树的高度并一定就一定小于size大的树,size大的子树的高度可能就是2,size小的子树的高度也可能大于2;
  • 合并时的优化的目的是合并后的树的高度最小,树的高度越小,查找时的路劲就越短,速度响应也越快;
  • 因此用表示每棵子树的高度的数组rank代替表示每棵子树节点多少的数组size;
public class UnionFind4 implements UF {

    private int[] rank;   // rank[i]表示以i为根的集合所表示的树的层数
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind4(int size){
        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }
    
}

基于Rank优化后的合并操作

  • 合并的时候,哪棵树的rank小,把哪棵树合并于rank大的树,合并完了不用更新rank大的树的rank值,因为rank小的树的高度最大比rank大的树的rank小1,合并为完了rank小的树的“脚”不会伸出来;
  • 只有两棵树的rank值相等,容纳另一颗树的rank值需要加1;
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
    int pRoot = find(p);
    int qRoot = find(q);

    if( pRoot == qRoot )
        return;

    // 根据两个元素所在树的rank不同判断合并方向
    // 将rank低的集合合并到rank高的集合上
    if(rank[pRoot] < rank[qRoot])
        parent[pRoot] = qRoot;
    else if(rank[qRoot] < rank[pRoot])
        parent[qRoot] = pRoot;
    else{ // rank[pRoot] == rank[qRoot]
        parent[pRoot] = qRoot;
        rank[qRoot] += 1;   // 此时, 我维护rank的值
    }
}

性能比较

import java.util.Random;

public class Main {

    private static double testUF(UF uf, int m){
        int size = uf.getSize();
        Random random = new Random();
        long startTime = System.nanoTime();


        for(int i = 0 ; i < m ; i ++){
            int a = random.nextInt(size);
            int b = random.nextInt(size);
            uf.unionElements(a, b);
        }

        for(int i = 0 ; i < m ; i ++){
            int a = random.nextInt(size);
            int b = random.nextInt(size);
            uf.isConnected(a, b);
        }

        long endTime = System.nanoTime();
        return (endTime - startTime) / 1000000000.0;
    }

    public static void main(String[] args) {
        int size = 10000000;
        int m = 10000000;

        UnionFind3 uf3 = new UnionFind3(size);
        System.out.println("UnionFind3 : " + testUF(uf3, m) + " s");

        UnionFind4 uf4 = new UnionFind4(size);
        System.out.println("UnionFind4 : " + testUF(uf4, m) + " s");
    }
}

输出:

  • 测试结果不是很明显;
UnionFind3 : 5.7852983 s
UnionFind4 : 5.402423 s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值