python重新排列数组_python – 将2d数组(字段)添加到numpy重新排列

让我们说我做了一个混乱.

> arr = np.recarray(10, [("afield", "

> arr.dtype

dtype((numpy.record, [('afield', '

我想添加一个字段,以便arr看起来像:

> arr.dtype

dtype((numpy.record, [('afield', '

我不知道要传递给dtypes =参数.

我尝试了dtypes = np.dtype(“f8”,(3,))没有成功.

> from numpy.lib.recfunctions import append_fields

> data = arr["pos"][:]

> new_arr = append_fields(arr, 'vel', data, dtypes =np.dtype("f8",(3,)),usemask=False)

ValueError: could not broadcast input array from shape (10,3) into shape (10)

或者,如果我传递一个单元素列表,我会收到另一个错误.

> new_arr = append_fields(arr, 'vel', data, dtypes =[("f8",(3,))],usemask=False)

ValueError: could not broadcast input array from shape (10,3) into shape (10,3,3)

我想要一个(10,3)的形状,但我只能得到(10,)或(10,3,3).

最佳答案 append_fields和大多数其他重新排列函数创建一个新的dtype和一个空数组,然后按照原始名称将字段复制到结果中.

我将用结构化数组来说明

原始dtype和数组:

In [102]: dt=np.dtype([('afield','f'),('pos','f',(3,))])

In [103]: dt

Out[103]: dtype([('afield', '

In [104]: arr = np.ones((3,),dtype=dt)

In [105]: arr

Out[105]:

array([(1.0, [1.0, 1.0, 1.0]), (1.0, [1.0, 1.0, 1.0]),

(1.0, [1.0, 1.0, 1.0])],

dtype=[('afield', '

修改后的dtype:

In [106]: dt1=np.dtype([('afield','f'),('pos','f',(3,)),('vel','f',(2,))])

In [107]: arr1 = np.empty((3,),dtype=dt1)

In [108]: arr1

Out[108]:

array([(0.0, [0.0, 0.0, 0.0], [0.0, 0.0]),

(0.0, [0.0, 0.0, 0.0], [0.0, 0.0]),

(0.0, [0.0, 0.0, 0.0], [0.0, 0.0])],

dtype=[('afield', '

In [109]: for name in dt.names:

.....: arr1[name] = arr[name]

In [110]: arr1

Out[110]:

array([(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),

(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),

(1.0, [1.0, 1.0, 1.0], [0.0, 0.0])],

dtype=[('afield', '

recarray是相同的东西,但能够访问字段作为属性(arr.pos).

添加一个简单的整数字段:

In [118]: rf.append_fields(arr, 'vel', np.arange(3),usemask=False)

Out[118]:

array([(1.0, [1.0, 1.0, 1.0], 0), (1.0, [1.0, 1.0, 1.0], 1),

(1.0, [1.0, 1.0, 1.0], 2)],

dtype=[('afield', '

使用(2,)字段,我在recursive_fill步骤中遇到错误.通过适当的输入,我可以使用它来填充我的dt1数组:

In [206]: arr = np.ones((3,),dtype=dt)

In [207]: arr1 = np.zeros((3,),dtype=dt1)

In [208]: rf.recursive_fill_fields(arr,arr1)

Out[208]:

array([(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),

(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),

(1.0, [1.0, 1.0, 1.0], [0.0, 0.0])],

dtype=[('afield', '

In [210]: x = np.ones((3,),dtype=[('vel','f',(2,))])

In [211]: x['vel'] *= 2

In [212]: rf.recursive_fill_fields(x,arr1)

Out[212]:

array([(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),

(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),

(1.0, [1.0, 1.0, 1.0], [2.0, 2.0])],

dtype=[('afield', '

现在在append_fields中尝试x:

In [213]: rf.append_fields(arr, 'vel', x, usemask=False)

Out[213]:

array([(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],)),

(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],)),

(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],))],

dtype=[('afield', '

糟糕 – 我正在筑巢.它回到我原来的例子 – 创建目标并按名称填充它.

merge_arrays做得更好 – 扁平化

In [247]: rf.merge_arrays((arr,x),flatten=True)

Out[247]:

array([(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),

(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),

(1.0, [1.0, 1.0, 1.0], [2.0, 2.0])],

dtype=[('afield', '

为该新字段创建适当数组的另一种方法

In [248]: dx = [('f0','f',(2,))]

In [250]: y=np.zeros((3,), dtype=dx)

In [251]: y['f0'] = np.arange(6.).reshape(3,2)

经常创建和填充似乎是制作这些复杂结构化数组的最佳方法.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值