让我们说我做了一个混乱.
> arr = np.recarray(10, [("afield", "
> arr.dtype
dtype((numpy.record, [('afield', '
我想添加一个字段,以便arr看起来像:
> arr.dtype
dtype((numpy.record, [('afield', '
我不知道要传递给dtypes =参数.
我尝试了dtypes = np.dtype(“f8”,(3,))没有成功.
> from numpy.lib.recfunctions import append_fields
> data = arr["pos"][:]
> new_arr = append_fields(arr, 'vel', data, dtypes =np.dtype("f8",(3,)),usemask=False)
ValueError: could not broadcast input array from shape (10,3) into shape (10)
或者,如果我传递一个单元素列表,我会收到另一个错误.
> new_arr = append_fields(arr, 'vel', data, dtypes =[("f8",(3,))],usemask=False)
ValueError: could not broadcast input array from shape (10,3) into shape (10,3,3)
我想要一个(10,3)的形状,但我只能得到(10,)或(10,3,3).
最佳答案 append_fields和大多数其他重新排列函数创建一个新的dtype和一个空数组,然后按照原始名称将字段复制到结果中.
我将用结构化数组来说明
原始dtype和数组:
In [102]: dt=np.dtype([('afield','f'),('pos','f',(3,))])
In [103]: dt
Out[103]: dtype([('afield', '
In [104]: arr = np.ones((3,),dtype=dt)
In [105]: arr
Out[105]:
array([(1.0, [1.0, 1.0, 1.0]), (1.0, [1.0, 1.0, 1.0]),
(1.0, [1.0, 1.0, 1.0])],
dtype=[('afield', '
修改后的dtype:
In [106]: dt1=np.dtype([('afield','f'),('pos','f',(3,)),('vel','f',(2,))])
In [107]: arr1 = np.empty((3,),dtype=dt1)
In [108]: arr1
Out[108]:
array([(0.0, [0.0, 0.0, 0.0], [0.0, 0.0]),
(0.0, [0.0, 0.0, 0.0], [0.0, 0.0]),
(0.0, [0.0, 0.0, 0.0], [0.0, 0.0])],
dtype=[('afield', '
In [109]: for name in dt.names:
.....: arr1[name] = arr[name]
In [110]: arr1
Out[110]:
array([(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),
(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),
(1.0, [1.0, 1.0, 1.0], [0.0, 0.0])],
dtype=[('afield', '
recarray是相同的东西,但能够访问字段作为属性(arr.pos).
添加一个简单的整数字段:
In [118]: rf.append_fields(arr, 'vel', np.arange(3),usemask=False)
Out[118]:
array([(1.0, [1.0, 1.0, 1.0], 0), (1.0, [1.0, 1.0, 1.0], 1),
(1.0, [1.0, 1.0, 1.0], 2)],
dtype=[('afield', '
使用(2,)字段,我在recursive_fill步骤中遇到错误.通过适当的输入,我可以使用它来填充我的dt1数组:
In [206]: arr = np.ones((3,),dtype=dt)
In [207]: arr1 = np.zeros((3,),dtype=dt1)
In [208]: rf.recursive_fill_fields(arr,arr1)
Out[208]:
array([(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),
(1.0, [1.0, 1.0, 1.0], [0.0, 0.0]),
(1.0, [1.0, 1.0, 1.0], [0.0, 0.0])],
dtype=[('afield', '
In [210]: x = np.ones((3,),dtype=[('vel','f',(2,))])
In [211]: x['vel'] *= 2
In [212]: rf.recursive_fill_fields(x,arr1)
Out[212]:
array([(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),
(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),
(1.0, [1.0, 1.0, 1.0], [2.0, 2.0])],
dtype=[('afield', '
现在在append_fields中尝试x:
In [213]: rf.append_fields(arr, 'vel', x, usemask=False)
Out[213]:
array([(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],)),
(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],)),
(1.0, [1.0, 1.0, 1.0], ([2.0, 2.0],))],
dtype=[('afield', '
糟糕 – 我正在筑巢.它回到我原来的例子 – 创建目标并按名称填充它.
merge_arrays做得更好 – 扁平化
In [247]: rf.merge_arrays((arr,x),flatten=True)
Out[247]:
array([(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),
(1.0, [1.0, 1.0, 1.0], [2.0, 2.0]),
(1.0, [1.0, 1.0, 1.0], [2.0, 2.0])],
dtype=[('afield', '
为该新字段创建适当数组的另一种方法
In [248]: dx = [('f0','f',(2,))]
In [250]: y=np.zeros((3,), dtype=dx)
In [251]: y['f0'] = np.arange(6.).reshape(3,2)
经常创建和填充似乎是制作这些复杂结构化数组的最佳方法.