第一章《有理数》
1、《正数和负数 》 《正数和负数(答案+解析) 》
2、《有理数的定义及分类》 《有理数的定义和分类(答案)》
3、《培优专题:无限循环小数化分数》
4、《数轴》 《数轴(答案)》
5、《培优专题:数轴题型---距离问题》
6、《相反数》 《相反数(答案)》
7、《绝对值(基础知识)》 《绝对值(答案)》
8、《有理数比大小(基础知识)》 《有理数比大小(答案)》
9、《培优专题:数轴上两点间的距离》
10、《有理数加法运算法则》 《有理数加法运算法则(答案)》
11、《有理数加法运算律》 《有理数加法运算律(答案)》
12、《有理数的减法》 《有理数的减法(答案)》
13、《有理数加减混合运算》
14、《有理数运算技巧:拆项法》
15、《有理数乘法法则》
16、《多个有理数相乘》
17、《有理数乘法运算律》
18、《有理数的除法》
19、《有理数的加减乘除混合运算》
20、《有理数乘方》
21、《有理数混合运算——加减乘除乘方》
22、《科学计数法》
23、《近似数》
24、《培优专题1:|a|比a》
25、《给定条件去绝对值》
第二章《整式的加减》
1、《单项式》
2、《多项式(小会老师微课堂)》
3、《一元一次方程》
4、《合并同类项题型》
5、《去括号》
6、《整式的加减》
7、《整式的加减--化简求值》
8、《整式专题:巧用“无关”求字母的值》
9、《整式专题:算错了怎么办?》
第三章《一元一次方程》
1、《一元一次方程的定义》
2、《秉公任直 遇物持平---等式的性质》
3、《解一元一次方程---合并同类项》
4、《解一元一次方程-移项》
5、《解一元一次方程---去括号》
6、《解一元一次方程---去分母》
7、《解一元一次方程的基本步骤》
8、《一元一次方程专题-解的问题》
9、《特殊形式一元一次方程解法---含小数、多重括号的方程》
10、《电话计费问题》
11、《分段优惠问题》
12、《工程问题》
13、《利润问题》
14、《配套问题》
15、《赛场积分问题》
16、《数字问题》
17、《分段计费问题》
第四章《几何初步》
1、《直线、射线、线段》
2、《直线、线段的计数问题》
3、《线段的大小比较》
4、《线段的计算---线段的和差》
5、《规矩绳墨 尺规作图---1、作一条线段等于已知线段》
6、《线段的计算---线段中点》
7、《线段的计算---分类思想》
8、《角的定义及表示方法》
9、《角平分线的定义》
10、《角的比较和运算》
11、《余角和补角》
12、《余角和补角计算专题》
13、《角度的单位及换算》
14、《角度的计算》
15、《角度的计算-方程思想》
16、《数轴上的动点问题》
17、《线段上的动点问题》
18、《钟表上的角度问题》
19、《线段的计算---方程思想》
20、微课《直线、线段的计数问题》
七年级数学培优小专题
全部免费,公众号看不到可以在荔枝微课观看
专题一 小技巧有大用处---有理数的巧算
第一讲 功不可没的运算律
第二讲 分组搭配 相得益彰
第三讲 拆与添的艺术---拆项法
第四讲 拆与添的艺术---添项法
第五讲 开心消消乐---裂项相消法基本型
开心消消乐---裂项相消进阶型
第六讲 开心消消乐---错位相减法
第七讲 《改头换面 重新做题---整体换元法》
第八讲 《数形结合 神机妙算---利用图形巧算》
专题二 绝对有料
第一讲 《绝对有料!---给定条件去绝对值》
第二讲 《绝对有料!---零点分段去绝对值》
第三讲 《绝对有料!---我和我的绝对值》
专题三 不平静的数轴
第一讲 调皮的动点---一点跳出规律
第二讲 调皮的动点---两点追及相遇
第三讲 不平静的数轴---整点覆盖问题
第四讲 妖娆的数轴!
专题四 天地有道 万物有序---探究规律题型
第一讲 天地有道 万物有序---数字篇1
天地有道 万物有序---数字篇2
第二讲 天地有道 万物有序---算式篇
第三讲 天地有道 万物有序---阵法篇
《天地有道 万物有序---斐波那契数列》
第四讲 天地有道 万物有序---图形的生长
专题五 神奇的乘方
第一讲 神奇的乘方---指数的威力!
第二讲 神奇的乘方---末位循环
番外篇
第一讲 透过现象看本质!---利用三视图求几何体表面积
第二讲 透过现象看本质!---利用三视图还原几何体
七年级数学培优小专题
全部免费,公众号看不到可以在荔枝微课观看
专题一 小技巧有大用处---有理数的巧算
第一讲 功不可没的运算律
第二讲 分组搭配 相得益彰
第三讲 拆与添的艺术---拆项法
第四讲 拆与添的艺术---添项法
第五讲 开心消消乐---裂项相消法基本型
开心消消乐---裂项相消进阶型
第六讲 开心消消乐---错位相减法
第七讲 《改头换面 重新做题---整体换元法》
第八讲 《数形结合 神机妙算---利用图形巧算》
专题二 绝对有料
第一讲 《绝对有料!---给定条件去绝对值》
第二讲 《绝对有料!---零点分段去绝对值》
第三讲 《绝对有料!---我和我的绝对值》
专题三 不平静的数轴
第一讲 调皮的动点---一点跳出规律
第二讲 调皮的动点---两点追及相遇
第三讲 不平静的数轴---整点覆盖问题
第四讲 妖娆的数轴!
专题四 天地有道 万物有序---探究规律题型
第一讲 天地有道 万物有序---数字篇1
天地有道 万物有序---数字篇2
第二讲 天地有道 万物有序---算式篇
第三讲 天地有道 万物有序---阵法篇
《天地有道 万物有序---斐波那契数列》
第四讲 天地有道 万物有序---图形的生长
专题五 神奇的乘方
第一讲 神奇的乘方---指数的威力!
第二讲 神奇的乘方---末位循环
番外篇
第一讲 透过现象看本质!---利用三视图求几何体表面积
第二讲 透过现象看本质!---利用三视图还原几何体
第一章 有理数
一、 知识要点
本章的主要利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
项式按这个字母升幂排列.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
第三章《一元一次方程》综合复习指导
a=b,那么ac=bc;如果a=b(c≠0),那么=
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax = b (a≠0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).
六、用方程思想解决实际问题的一般步骤
1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.、设:设未知数(可分直接设法,间接设法)
3、列:根据题意列方程.
4、解:解出所列方程.
5、 检:检验所求的解是否符合题意.
6、答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1、 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2、 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
6、行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度×时间.
(2)基本类型有
① 相遇问题;
② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
8、储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
第四章 图形认识初步
【知识点归纳】
一、 多姿多彩的图形
1. 从实物中抽象出的各种图形统称为几何图形。
2. 点、线、面、体
A. 点:线和线相交的地方。
B. 线:面和面相交的地方,线可分为直线、射线、线段
C. 体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。
D. 面:包围着体的是面,面可分为平的面、曲的面。
二、 直线、射线、线段
1.两点确定一条直线
2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,
这个公共点叫做它们的交点。
3. 两点之间,线段最短。
4. 连接两点间的线段的长度,叫做这两点的距离。
三、 角
1.有且只有一个角
2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。
3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″
4.角的平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
B.角平分线上的一点到角的两边距离相等。
四、线段、射线和直线的联系与区别
联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.
区别:
名称 | 延伸情况 有无长短 | 图示 | 表示法 | 端点个数 | 作图描述 | 备注 |
线段 | 不可延伸,有长短 | 线段a或线段AB(BA) | 2个 | 连结AB | A、B两点无序 | |
射线 | 向一个方向延伸,无长短 | 射线AB | 1个 | 以A为端点作射线AB | A、B两点有序,端点在前,射线上一点在后 | |
直线 | 向两个方向延伸 | 直线l或直线AB(BA) | 无端点 | 过A、B两点作直线AB | A、B两点无序 |