r语言中残差与回归值的残差图_R语言相关分析和稳健线性回归分析

本文通过物种多样性的例子,详细介绍了在R语言中如何进行相关分析(包括Pearson、Kendall和Spearman相关性检验)和线性回归分析,以及如何绘制残差图和进行稳健回归,帮助理解模型假设和异常值处理。
摘要由CSDN通过智能技术生成

原文链接:

http://tecdat.cn/?p=9484​tecdat.cn

目录

怎么做测试

功率分析


介绍

下面以物种多样性为例子展示了如何在R语言中进行相关分析和线性回归分析。

怎么做测试

相关和线性回归示例


  1. Data = read.table(textConnection(Input),header=TRUE)

数据简单图


  1. plot(Species ~ Latitude,

  2. data=Data,

  3. pch=16,

  4. xlab = "Latitude",

  5. ylab = "Species")

1c50f25a3f3d53b610b188cbbc146a14.png

相关性

可以使用 cor.test函数。它可以执行Pearson,Kendall和Spearman相关。

皮尔逊相关

皮尔逊相关是最常见的相关形式。假设数据是线性相关的,并且残差呈正态分布。


  1. cor.test( ~ Species + Latitude,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值