前言
Data Lake Analytics(后文简称 DLA)可以帮助用户通过标准的SQL语句直接对存储在OSS、TableStore上的数据进行查询分析。
对于同一份数据来说,以不同的格式保存,不仅在存储空间上有差别,在使用DLA查询时执行时间也是有差别的。通常来说,同样大小的数据,以ORC和PARQUET存储时,性能要优于以普通文本(CSV)的格式存储。而大部分用户在OSS上的数据是以CSV的格式存储的,如果希望得到更好的查询效率,往往需要借助第三方工具先对文件进行格式转换,再将转换后的数据文件导入OSS,再使用DLA进行查询,比较麻烦。
本文将介绍如何在DLA中实现不同文件格式之间的转换。
转换方法
简单来说,就是在DLA中分别依据原始数据文件的格式和目标数据文件的格式,创建两张表;然后通过INSERT INTO target_table SELECT FROM source_table 语句,将数据以目标表指定的格式写入OSS中。
详细示例
下面将以TPC-H中的orders.tbl文件为例,详细说明如何将普通文本文件转成ORC格式的文件。
-
在DLA中创建表orders_txt,并将LOCATION指向文件orders.tbl在OSS中的路径。
CREATE EXTERNAL TABLE orders_txt ( O_ORDERKEY INT, O_CUSTKEY INT, O_ORDERSTATUS STRING, O_TOTALPRICE DOUBLE, O_ORDERDATE DATE, O_ORDERPRIORITY STRING, O_CLERK STRING, O_SHIPPRIORITY INT, O_COMMENT STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 'oss://mybucket/datasets/jinluo/test/convert/orders.tbl';
- 在DLA中创建表orders_orc, 并将LOCATION指向OSS中的目标位置,注意该路径必须为已经存在的目录,即以/结尾。
CREATE EXTERNAL TABLE orders_orc (
O_ORDERKEY INT,
O_CUSTKEY INT,
O_ORDERSTATUS STRING,
O_TOTALPRICE DOUBLE,
O_ORDERDATE DATE,
O_ORDERPRIORITY STRING,
O_CLERK STRING,
O_SHIPPRIORITY INT,
O_COMMENT STRING
)
STORED AS ORC LOCATION 'oss://mybucket/datasets/jinluo/test/convert/orders_orc/';
- 执行INSERT...SELECT语句,将orders_txt表中满足要求的数据插入orders_orc中。
INSERT INTO orders_orc SELECT * FROM orders_txt;
- INSERT语句执行成功后,在OSS上目标表orders_orc指向的目录下,会看到生成的数据文件。
2018-11-22 10:27:15 0.00B Standard oss://mybucket/datasets/jinluo/test/convert/orders_orc/
2018-11-22 10:59:26 1005.62MB Standard oss://mybucket/datasets/jinluo/test/convert/orders_orc/20181122_025537_6_558tf_0eec9b17-dbc3-4ba0-a9df-4024aa6c7d97
2018-11-22 10:59:26 1005.74MB Standard oss://mybucket/datasets/jinluo/test/convert/orders_orc/20181122_025537_6_558tf_74016d12-a570-409d-b444-a216b69a3411
注意事项
- 每次执行INSERT语句不会覆盖表目录下已有的数据文件,只会在目录下添加新文件;
- 由于DLA没有对用户BUCKET的删除权限,当INSERT语句__执行失败__时,需要用户__手动删除__已经在LOCATION下生成的数据文件。
- 在目标目录下新生成的文件个数,与实际执行的集群环境有关,并不是固定的。
- 目前不支持写入在创建时使用OpenCSVSerde, MultiDelimitSerDe, RegexSerDe和com.esri.hadoop.hive.serde.JsonSerde (Esri ArcGIS地理Json)的目标表。
更多文章
使用Data Lake Analytics从OSS清洗数据到AnalyticDB
基于 DataLakeAnalytics 的数据湖实践
如何在阿里云上使用Data Lake Analytics分析Table Store数据
Data Lake Analytics的Geospatial分析函数