通过搜集、累积大量的市场及顾客的资料,企业建立了庞大的数据仓库,通过采用数据挖掘技术,寻找出消费者最关键、最重要的影响因素,并籍此建立真正以客户需求为出发点的CRM系统

  在CRM系统中,数据挖掘的具体应用包括:客户盈利能力提升、客户挽留、客户细分、客户倾向、渠道优化、风险管理、欺诈监测、购买倾向分析、需求预测、等价格优化等。

  下面以中国移动客户保留计划为例,来分析说明数据挖掘在CRM中扮演的角色:

  当前困扰运营商的主要问题是国内移动通信市场的价格战,不少客户从一个移动运营商转向另一个移动运营商只是为了得到更低的费用及其他额外的优惠条件(如赠机)。为此需要通过对转网客户群的特征进行深入分析,然后再根据分析结果到现有客户资料中找出可能转网的客户群,并有针对性地设计一些客户保持计划来预防现有客户的流失。

  为达到保留现有客户的目的,中移动应对市场短期竞争及实现其长期发展的主要策略是 营销重心后移,巩固中高端用户,通过对现有个人用户消费行为的分析设计有针对性的个性化套餐。具体可概括为以下六个方面:

  关注现有客户的稳定性,通过对现有客户利益诉求的满足,以及对移动品牌宣传的推动,来巩固现有的在网客户;

  通过对客户消费行为及偏好差异的分析,针对不同细分人群设计相应的套餐;

  通过对客户价值量的差异分析以提供不同的客户服务及忠诚度计划;

  积极的客户挽留工作,对客户流失进行监控,及时进行用户挽留;

  通过各种合作伙伴的捆绑扩大服务的广度,促进客户发展及客户维系(如移动机场贵宾休息室服务等)。

  通过对移动竞争策略的分析,可以发现数据挖掘在中国移动套餐设计中的作用:

  通过有效的数据挖掘,通过对消费者行为的分析来进行客户细分,具体内容包括界定客户群消费行为的指标、对消费行为的聚类分析、客户群的分类并对其的普遍行为进行描述;

  明确消费者的战略定位,通过对各消费群提的规模及业务贡献的分析,明确各消费群体的竞争稳定性, 针对不同的消费群体界定出其在企业中的战略定位,同时通过有效的套餐元素设计来推出针对性的套餐计划。

  通过对不同群体之间的套餐进行组合,形成包括基本套餐、特殊套餐及可选择性捆绑的套餐模板。还有更多相关信息请参阅CRM系统信息网