weka学习(三)缺失值处理

本文主要探讨了使用Weka进行数据分析时如何处理数据集中的缺失值,包括了不同处理策略的介绍和应用,对于机器学习的数据预处理具有实践指导意义。
摘要由CSDN通过智能技术生成
/**
 * @author hao.wei
 */
@Service
public class MissingHandleBizImpl implements MissingHandleBiz {

    private static final Logger logger = LoggerFactory.getLogger(MissingHandleBizImpl.class);
    /** 缺失值用该属性的平均值填充*/
    @Override
    public Instances missingValuesFilledWithAvg(Instances instances, String incompatible) {
        try {
            // 属性个数(列)
            int dim = instances.numAttributes();
            // 实例个数(行)
            int num = instances.numInstances();
            logger.info("开始将平均值填充入缺失值...");
            double[] meanV = new double[dim];
            for (
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值