An introduction to numerical analysis theorem 6.3 :Hermite Interpolation Theorem

Let $n\geq 0$,and suppose that $x_i$,$i=0,\cdots,n$ are distinct real numbers.Then,given two sets of real numbers $y_i,i=0,\cdots,n$,and $z_i,i=0,\cdots,n$,there is a unique polynomial $p_{2n+1}$ in $\mathcal{P}_{2n+1}$such that

\begin{equation}
p_{2n+1}(x_i)=y_i,p'_{2n+1}(x_i)=z_i,i=0,\cdots,n
\end{equation}

 


Proof:Let the polynomial be in the form of

\begin{equation}
a_{2n+1}x^{2n+1}+a_{2n}x^{2n}+\cdots+a_1x+a_0
\end{equation}


Then
\begin{align*}
\begin{cases}
a_{2n+1}x_0^{2n+1}+a_{2n}x_0^{2n}+\cdots+a_1x_0+a_0=y_0\\
\vdots\\
a_{2n+1}x_n^{2n+1}+a_{2n}x_n^{2n}+\cdots+a_1x_n+a_0=y_0\\
\end{cases}
\end{align*}
And
\begin{align*}
\begin{cases}
(2n+1)a_{2n+1}x_0^{2n}+2na_{2n}x_0^{2n-1}+\cdots+a_1+0\cdot a_0=z_0\\
\vdots\\
(2n+1)a_{2n+1}x_n^{2n}+2na_{2n}x_n^{2n-1}+\cdots+a_1+0\cdot a_0=z_n\\
\end{cases}
\end{align*}
Now we see the determinant
\begin{equation}
\begin{vmatrix}
x_0^{2n+1}&x_0^{2n}&\cdots&x_0&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
(2n+1)x_0^{2n}&2nx_0^{2n-1}&\cdots&1&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_n^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}
\end{equation}
Now we prove that this determinant is nonzero.We first study some concret examples.



When $n=0$,the determinant is
\begin{equation}
\det \begin{pmatrix}
x_0^1&1\\
1&0\\
\end{pmatrix}
\end{equation}
Which is equal to $-1$.When $n=1$,the determinant is

\begin{equation}
\det \begin{pmatrix}
x_0^3&x_0^2&x_0&1\\
x_1^3&x_1^2&x_1&1\\
3x_0^2&2x_0&1&0\\
3x_1^2&2x_1&1&0\\
\end{pmatrix}
\end{equation}
This determinant is equal to
\begin{equation}
\det \begin{pmatrix}
x_0&1&x_0^3&x_0^2\\
x_1&1&x_1^3&x_1^2\\
1&0&3x_0^2&2x_0\\
1&0&3x_1^2&2x_1\\
\end{pmatrix}
\end{equation}
We know that
\begin{equation}
\begin{pmatrix}
x_0&1\\
x_1&1\\
\end{pmatrix}
\end{equation}
is invertible,so
\begin{align*}
\det \begin{pmatrix}
x_0&1&x_0^3&x_0^2\\
x_1&1&x_1^3&x_1^2\\
1&0&3x_0^2&2x_0\\
1&0&3x_1^2&2x_1\\
\end{pmatrix}=\det \begin{pmatrix}
x_0&1\\
x_1&1\\
\end{pmatrix}\det \left[ \begin{pmatrix}
3x_0^2&2x_0\\
3x_1^2&2x_1\\
\end{pmatrix}-\begin{pmatrix}
1&0\\
1&0\\
\end{pmatrix}\begin{pmatrix}
x_0&1\\
x_1&1\\
\end{pmatrix}^{-1}\begin{pmatrix}
x_0^3&x_0^2\\
x_1^3&x_1^2\\
\end{pmatrix}\right]
\end{align*}
\begin{equation}
\begin{pmatrix}
x_0&1\\
x_1&1\\
\end{pmatrix}^{-1}=\frac{1}{x_0-x_1}\begin{pmatrix}
1&-1\\
-x_1&x_0\\
\end{pmatrix}
\end{equation}


\begin{equation}
\begin{pmatrix}
1&0\\
1&0\\
\end{pmatrix}\begin{pmatrix}
1&-1\\
-x_1&x_0\\
\end{pmatrix}=\begin{pmatrix}
1&-1\\
1&-1\\
\end{pmatrix}
\end{equation}

\begin{equation}
\begin{pmatrix}
1&-1\\
1&-1\\
\end{pmatrix} \begin{pmatrix}
x_0^3&x_0^2\\
x_1^3&x_1^2\\
\end{pmatrix}=\begin{pmatrix}
x_0^3-x_1^3&x_0^2-x_1^2\\
x_0^3-x_1^3&x_0^2-x_1^2\\
\end{pmatrix}
\end{equation}
so we just need to consider
\begin{equation}
\begin{pmatrix}
3x_0^2&2x_0\\
3x_1^2&2x_1\\
\end{pmatrix}-\begin{pmatrix}
x_0^2+x_1^2+x_0x_1&x_0+x_1\\
x_0^2+x_1^2+x_0x_1&x_0+x_1\\
\end{pmatrix}=\begin{pmatrix}
2x_0^2-x_1^2-x_0x_1&x_0-x_1\\
2x_1^2-x_0^2-x_0x_1&x_1-x_0\\
\end{pmatrix}
\end{equation}
so we just need to consider
\begin{equation}
\det \begin{pmatrix}
2x_0^2-x_1^2-x_0x_1&x_0-x_1\\
2x_1^2-x_0^2-x_0x_1&x_1-x_0\\
\end{pmatrix}=(x_0-x_1)^2(x_1-x_0)
\end{equation}
So

\begin{equation}
\det \begin{pmatrix}
x_0^3&x_0^2&x_0&1\\
x_1^3&x_1^2&x_1&1\\
3x_0^2&2x_0&1&0\\
3x_1^2&2x_1&1&0\\
\end{pmatrix}=-(x_0-x_1)^4
\end{equation}

When $n=2$,the determinant is

\begin{equation}
\det\begin{pmatrix}
x_0^5&x_0^4&x_0^3&x_0^2&x_0&1\\
x_1^5&x_1^4&x_1^3&x_1^2&x_1&1\\
x_2^5&x_2^4&x_2^3&x_2^2&x_2&1\\
5x_0^4&4x_0^3&3x_0^2&2x_0&1&0\\
5x_1^4&4x_1^3&3x_1^2&2x_1&1&0\\
5x_2^4&4x_2^3&3x_2^2&2x_2&1&0\\
\end{pmatrix}
\end{equation}
By using mathematica,it is easy to see that


\begin{equation}
\det\begin{pmatrix}
x_0^5&x_0^4&x_0^3&x_0^2&x_0&1\\
x_1^5&x_1^4&x_1^3&x_1^2&x_1&1\\
x_2^5&x_2^4&x_2^3&x_2^2&x_2&1\\
5x_0^4&4x_0^3&3x_0^2&2x_0&1&0\\
5x_1^4&4x_1^3&3x_1^2&2x_1&1&0\\
5x_2^4&4x_2^3&3x_2^2&2x_2&1&0\\
\end{pmatrix}=(x_0-x_1)^4(x_0-x_2)^4(x_1-x_2)^4
\end{equation}


 

 

Now we prove that


\begin{equation}
\begin{vmatrix}
x_0^{2n+1}&x_0^{2n}&\cdots&x_0&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
(2n+1)x_0^{2n}&2nx_0^{2n-1}&\cdots&1&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_n^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}=(-1)^{n}\prod_{n\geq i>j\geq 0}(x_i-x_j)^4
\end{equation}

Let
\begin{equation}
f(x)=
\begin{vmatrix}
x^{2n+1}&x^{2n}&\cdots&x&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
(2n+1)x^{2n}&2nx^{2n-1}&\cdots&1&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_{n}^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}
\end{equation}

It is easy to verify that $f(x)$ is a polynomial of degree $4n$.And
\begin{equation}
f(x_1)=\cdots =f(x_n)=0
\end{equation}

So $(x-x_1)(x-x_2)\cdots (x-x_n)|f(x)$.And

\begin{align*}
f'(x)= \begin{vmatrix}
x^{2n+1}&x^{2n}&\cdots&x&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
2n(2n+1)x^{2n-1}&(2n-1)2nx^{2n-2}&\cdots&0&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_{n}^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}
\end{align*}
So $f'(x_1)=\cdots f'(x_n)=0$.So $(x-x_1)^2(x-x_2)^2\cdots
(x-x_n)^2|f(x)$.And

\begin{align*}
f''(x)= \begin{vmatrix}
(2n+1)x^{2n}&2nx^{2n-1}&\cdots&1&0\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
2n(2n+1)x^{2n-1}&(2n-1)2nx^{2n-2}&\cdots&0&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_{n}^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}+
\begin{vmatrix}
x^{2n+1}&x^{2n}&\cdots&x&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
(2n-1)2n(2n+1)x^{2n-2}&(2n-2)(2n-1)2nx^{2n-3}&\cdots&0&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_{n}^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}
\end{align*}

It is easy to verify that $f''(x_1)=\cdots f''(x_n)=0$.So

\begin{equation}
(x-x_1)^3(x-x_2)^3\cdots (x-x_n)^3|f(x)
\end{equation}
And it is also easy to figure out $f'''(x)$,so it is easy to verify that

\begin{equation}
f'''(x_1)=\cdots =f'''(x_n)=0
\end{equation}
So
\begin{equation}
(x-x_1)^4(x-x_2)^4\cdots (x-x_n)^4|f(x)
\end{equation}

Because $f(x)$ is a polynomial of degree $4n$,so $f(x)=a(x-x_1)^4(x-x_2)^4\cdots (x-x_n)^4$.According to symmetry ammong $x_0,x_1,\cdots,x_n$ in this determinant,it is easy to verify that

\begin{equation}
f(x_0)=c\prod_{n\geq i>j\geq 0}(x_i-x_j)^4
\end{equation}

Then we prove that $c=(-1)^n$.We do it by induction.It is easy to verify that When $n=1$,\begin{equation} \det \begin{pmatrix} x_0^3&x_0^2&x_0&1\\ x_1^3&x_1^2&x_1&1\\ 3x_0^2&2x_0&1&0\\ 3x_1^2&2x_1&1&0\\ \end{pmatrix}=-(x_0-x_1)^4 \end{equation}Then when n=2,Let's see the determinant \begin{equation} \det\begin{pmatrix} x_0^5&x_0^4&x_0^3&x_0^2&x_0&1\\ x_1^5&x_1^4&*x_1^3&*x_1^2&*x_1&*1\\ x_2^5&x_2^4&*x_2^3&*x_2^2&*x_2&*1\\ 5x_0^4&4x_0^3&3x_0^2&2x_0&1&0\\ 5x_1^4&4x_1^3&*3x_1^2&*2x_1&*1&*0\\ 5x_2^4&4x_2^3&*3x_2^2&*2x_2&*1&*0\\ \end{pmatrix} \end{equation} The element marked * also form a determinant,we know that the constant of this determinant is -1,so the constant term of the determinant   is $-1\times (4-5)=1$.……So by induction we know that $c=(-1)^n$.

 

So the determinant
\begin{equation}
\begin{vmatrix}
x_0^{2n+1}&x_0^{2n}&\cdots&x_0&1\\
x_1^{2n+1}&x_1^{2n}&\cdots&x_1&1\\
\vdots&\vdots&\cdots&\vdots\\
x_n^{2n+1}&x_n^{2n}&\cdots&x_n&1\\
(2n+1)x_0^{2n}&2nx_0^{2n-1}&\cdots&1&0\\
\vdots&\vdots&\cdots&\vdots&\cdots\\
(2n+1)x_n^{2n}&2nx_n^{2n-1}&\cdots&1&0\\
\end{vmatrix}
\end{equation}

is nonzero,so $p_{2n+1}$ exists and unique.

 

 

 

Remark :There is some discussion to this problem in  Prove an identity including determinant

转载于:https://www.cnblogs.com/yeluqing/archive/2012/12/15/3827962.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值