数据集

http://moreno.ss.uci.edu/data.html

http://archive.ics.uci.edu/ml/


海量数据(又称大数据)已经成为各大互联网企业面临的最大问题,如何处理海量数据,提供更好的解决方案,是目前相当热门的一个话题。类似MapReduce、 Hadoop等架构的普遍推广,大家都在构建自己的大数据处理,大数据分析平台。 

相应之下,目前对于海量数据处理人才的需求也在不断增多,此类人才可谓炙手可热!越来越多的开发者把目光转移到海量数据的处理上。但是不是所有人都能真正接触到,或者有机会去处理海量数据的,所以就需要一些公开的海量数据集来研究。 

在Quora上有人就问到,如何获取海量数据集。此问题得到了很多人的关注。具体可以看看回答,数据集的种类多种多样,有化学分析,基因遗传等等,从中你肯定能得到自己想要个数据集。 
Where can I get large datasets open to the public? 

首先说说几个收集数据集的网站: 
1、Public Data Sets on Amazon Web Services (AWS) 
http://aws.amazon.com/datasets 
Amazon从2008年开始就为开发者提供几十TB的开发数据。 

2、Yahoo! Webscope 
http://webscope.sandbox.yahoo.com/index.php 

3、Konect is a collection of network datasets 
http://konect.uni-koblenz.de/ 

4、Stanford Large Network Dataset Collection 
http://snap.stanford.edu/data/index.html 

再就是说说几个跟互联网有关的数据集: 
1、Dataset for "Statistics and Social Network of YouTube Videos" 
http://netsg.cs.sfu.ca/youtubedata/ 

2、1998 World Cup Web Site Access Logs 
http://ita.ee.lbl.gov/html/contrib/WorldCup.html 
这个是1998年世界杯期间的数据集。从1998/04/26 到 1998/07/26 的92天中,发生了 1,352,804,107次请求。 

3、Page view statistics for Wikimedia projects 
http://dammit.lt/wikistats/ 

4、AOL Search Query Logs - RP 
http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs 

5、livedoor gourmet 
http://blog.livedoor.jp/techblog/archives/65836960.html 

海量图像数据集: 
1、ImageNet 
http://www.image-net.org/ 
包含1400万的图像。 

2、Tiny Images Dataset 
http://horatio.cs.nyu.edu/mit/tiny/data/index.html 
包含8000万的32x32图像。 

3、 MirFlickr1M 
http://press.liacs.nl/mirflickr/ 
Flickr中的100万的图像集。 

4、 CoPhIR 
http://cophir.isti.cnr.it/whatis.html 
Flickr中的1亿600万的图像 

5、SBU captioned photo dataset 
http://dsl1.cewit.stonybrook.edu/~vicente/sbucaptions/ 
Flickr中的100万的图像集。 

6、Large-Scale Image Annotation using Visual Synset(ICCV 2011) 
http://cpl.cc.gatech.edu/projects/VisualSynset/ 
包含2亿图像 

7、NUS-WIDE 
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm 
Flickr中的27万的图像集。 

8、SUN dataset 
http://people.csail.mit.edu/jxiao/SUN/ 
包含13万的图像 

9、MSRA-MM 
http://research.microsoft.com/en-us/projects/msrammdata/ 
包含100万的图像,23000视频 

10、TRECVID 
http://trecvid.nist.gov/ 

Stack Overflow Dump Files 
7.3G stackoverflow.com-Posts.7z 
573.1K stackoverflow.com-Tags.7z 
153.0M stackoverflow.com-Users.7z 
2.2G stackoverflow.com-Comments.7z 

截止目前好像还没有国内的企业或者组织开放自己的数据集。希望也能有企业开发自己的数据集给研究人员使用,从而推动海量数据处理在国内的发展! 

2014/07/07 雅虎发布超大Flickr数据集 1亿的图片+视频 
http://yahoolabs.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images-for 

100多个有趣的数据集 
http://www.csdn.net/article/2014-06-06/2820111-100-Interesting-Data-Sets-for-Statistics


机器学习算法需要作用于数据,而数据的本质则决定了应用的机器学习算法是否合适,而数据的质量也会决定算法表现的好坏程度。所以会研究数据,会分析数据很重要。本文作为学习研究数据系列博文的开篇,列举了4个最流行的机器学习数据集。

Iris

Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

数据集特征:多变量记录数:150领域:生活
属性特征:实数属性数目:4捐赠日期1988-07-01
相关应用:分类缺失值?网站点击数:563347

Adult

该数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

数据集特征:多变量记录数:48842领域:社会
属性特征:类别型,整数属性数目:14捐赠日期1996-05-01
相关应用:分类缺失值?网站点击数:393977

Wine

这份数据集包含来自3种不同起源的葡萄酒的共178条记录。13个属性是葡萄酒的13种化学成分。通过化学分析可以来推断葡萄酒的起源。值得一提的是所有属性变量都是连续变量。

数据集特征:多变量记录数:178领域:物理
属性特征:整数,实数属性数目:13捐赠日期1991-07-01
相关应用:分类缺失值?网站点击数:337319

Car Evaluation

这是一个关于汽车测评的数据集,类别变量为汽车的测评,(unacc,ACC,good,vgood)分别代表(不可接受,可接受,好,非常好),而6个属性变量分别为「买入价」,「维护费」,「车门数」,「可容纳人数」,「后备箱大小」,「安全性」。值得一提的是6个属性变量全部是有序类别变量,比如「可容纳人数」值可为「2,4,more」,「安全性」值可为「low, med, high」。

数据集特征:多变量记录数:1728领域:N/A
属性特征:类别型属性数目:6捐赠日期1997-06-01
相关应用:分类缺失值?网站点击数:272901

小结

通过比较以上4个数据集的差异,简单地总结:当需要试验较大量的数据时,我们可以想到「Adult」;当想研究变量之间的相关性时,我们可以选择变量值只为整数或实数的「Iris」和「Wine」;当想研究logistic回归时,我们可以选择类变量值只有两种的「Adult」;当想研究类别变量转换时,我们可以选择属性变量为有序类别的「Car Evaluation」。更多的尝试还需要对这些数据集了解更多才行。



     本文转自stock0991 51CTO博客,原文链接:http://blog.51cto.com/qing0991/1923623,如需转载请自行联系原作者




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值