CompCars数据集

Comprehensive Cars(CompCars)数据集包含来自两个场景的数据,包括互联网场景下的汽车图像和监控场景下的汽车图像。

互联网场景下的汽车图像数据包含163个汽车品牌(奥迪、大众)下的1716种汽车模型(奥迪A4L,A6L等)。 共136726张整车图像和27618张(未验证)车的部分图像。

2022-6-29

好多人找我要数据集和“下载许可”,我又重新整理了一下。

首先,打印如下图,然后按要求填写信息

 

然后,将填好信息的电子版发送到以下邮箱:

Mr. Linjie Yang (yljatthu@gmail.com)

ccloy@ie.cuhk.edu.hk).

经过他们同意后方可使用下载该数据集。

数据集链接

http://​ ​​​​​​http://ai.stanford.edu/~jkrause/cars/car_dataset.html ​

有一个博客写的很详细,大家可以参考

https://blog.csdn.net/chengyq116/article/details/85054661

### 车辆识别公共数据集 对于车辆识别的研究,存在多个公开可用的数据集可以满足需求。以下是几个常用且具有代表性的数据集: #### 1. **Stanford Cars Dataset** 斯坦福汽车数据集是一个广泛使用的车辆分类和检测数据集。它包含了超过16,000张来自196个不同车型的照片,适用于细粒度图像分类任务。该数据集提供了高质量的标注以及详细的文档说明[^1]。 ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator(rescale=1./255) train_generator = datagen.flow_from_directory( 'path_to_stanford_cars_dataset/train', target_size=(224, 224), batch_size=32, class_mode='categorical' ) ``` #### 2. **KITTI Vision Benchmark Suite** KITTI 数据集不仅涵盖了自动驾驶场景中的多种挑战性任务(如目标检测、光流估计等),还特别适合于交通流量分析和行为理解研究。其繁忙交通子集能够提供丰富的动态环境样本[^2]。 #### 3. **CompCars Dataset** 这是一个大规模的车辆属性标注数据库,包含约28万幅图片跨越全球各地拍摄条件下的各种品牌型号。除了基本类别标签外,还包括颜色、角度等多个维度的信息支持更深入的学习模型训练测试评估工作。 #### 4. **Mirror Symmetry Database** 虽然主要关注镜像对称特性提取方面应用较少直接关联到传统意义上的车俩身份确认领域但是通过利用其中所含有的特定几何特征可以帮助改进某些特殊情况下比如遮挡严重或者光照变化剧烈条件下算法性能表现[^3]。 ---
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值