The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone. For a plane perpendicular to the axis of the cone, a circle is produced. For a plane that is not perpendicular to the axis and that intersects only a single nappe, the curve produced is either an ellipse or a parabola. The curve produced by a plane intersecting both nappes is a hyperbola.

conic section | equation |
---|---|
circle | x2+y2=a2 |
ellipse | x2/a2+y2/b2=1 |
parabola | y2=4ax |
hyperbola | x2/a2-y2/b2=1 |
Input
There are multiple test cases. The first line of input is an integer T ≈ 10000 indicating the number of test cases.
Each test case consists of a line containing 6 real numbers a, b, c, d, e, f. The absolute value of any number never exceeds 10000. It's guaranteed that a2+c2>0, b=0, the conic section exists and it is non-degenerate.
Output
For each test case, output the type of conic section ax2+bxy+cy2+dx+ey+f=0. See sample for more details.
Sample Input
5 1 0 1 0 0 -1 1 0 2 0 0 -1 0 0 1 1 0 0 1 0 -1 0 0 1 2 0 2 4 4 0
Sample Output
circle ellipse parabola hyperbola circle
References
- Weisstein, Eric W. "Conic Section." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ConicSection.html
首先,题目已经提示了b=0,就是不需考虑旋转,大大降低了题目难度。
其次,题目说明了曲线不会退化。
另外需要注意的是,曲线方程不一定如题中所示的标准形式,需要考虑平移的形式。如圆:(x-a)^2+(y-b)^2=c^2。
1 #include <iostream> 2 #include <string> 3 #include <cstdio> 4 #include <cmath> 5 #include <cstring> 6 #include <algorithm> 7 #include <map> 8 #include <vector> 9 #include <set> 10 #include <queue> 11 #include <stack> 12 #define LL long long 13 #define MAXI 2147483647 14 #define MAXL 9223372036854775807 15 #define eps (1e-8) 16 #define dg(i) cout << "*" << i << endl; 17 18 using namespace std; 19 20 int main() 21 { 22 double a, b, c ,d ,e ,f; 23 int t; 24 cin >> t; 25 while(t--) 26 { 27 cin >> a >> b >> c >> d >> e >> f; 28 if(a && a == c && d*d + e*e - 4*a*f > 0) puts("circle"); 29 else if(a*c < 0 && (d*d/(4*a*a)) + (e*e/(4*c*c)) - f) puts("hyperbola"); 30 else if((!a && d && c) || (!c && e && a)) puts("parabola"); 31 else puts("ellipse"); 32 } 33 return 0; 34 }