CF585E. Present for Vitalik the Philatelist [容斥原理 !]

CF585E. Present for Vitalik the Philatelist


题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\)满足\(gcd(S)=1,\ gcd(S,a) \neq 1\)的集合称为\(MeowS\),求\(MeowS\)的个数和


一开始想对于每个数求出有多少个数和它互质,就是没有公因子,容斥一下就是:
所有数-1个公质因子+2个不同公质因子-3...
每个数不同的质因子最多有8个,预处理一下貌似可做

然后看到了zyf2000的神做法,并没有看明白是什么意思,感觉说错了但是做法是对的

然后花了两节课来想为什么,终于想明白了

首先了解一下官方题解的做法:

  • 用容斥求\(gcd\neq 1\)的集合数,就是: \[A = (p_i\mid gcd的子集个数)\ -\ (p_ip_j \mid gcd的子集个数)\ +\ (p_ip_jp_k \mid gcd的子集个数)...\]
  • 然后对于每个数\(a\)\(A\)中消去包含它的集合的贡献再计入答案,通过枚举它的不同质因子的组合\(p...\),在上式中消去这个组合的贡献

看起来好复杂...并且枚举还是\(2^8\)

如何简化这个过程?

我们没有必要求每个数,整体考虑
设质数组合\(p...\)的倍数有\(c\)个,那么它的贡献就是\(2^c-1\),有多少个数计算的时候没有消去这个贡献呢,\(n-c\)个呀,就是没有这个组合的数!
计算\(A\)的时候直接乘上这个就行了

然后就得到zyf2000的神做法了...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+5, M=1e7+5, P=1e9+7;
typedef long long ll;
inline ll read(){
    char c=getchar();ll x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}

int n, a, m, mi[N];
int notp[M], p[M], mu[M], c[M];
void sieve(int n) {
    mu[1] = 1;
    for(int i=2; i<=n; i++) {
        if(!notp[i]) p[++p[0]]=i, mu[i]=-1;
        for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
            notp[i*p[j]] = 1;
            if(i%p[j] == 0) {mu[i*p[j]]=0; break;}
            mu[i*p[j]] = -mu[i];
        }
    }
}

ll ans=0;
int main() {
    //freopen("in","r",stdin);
    n=read(); mi[0]=1;
    for(int i=1; i<=n; i++) a=read(), m=max(m, a), c[a]++, mi[i]=(mi[i-1]<<1)%P;
    sieve(m);
    for(int i=1; i<=m; i++) {
        int tot=0;
        for(int j=i; j<=m; j+=i) tot += c[j];
        (ans += (ll) (n-tot) * (-mu[i]) * (mi[tot]-1) %P )%=P;
    }
    cout << (ans+P)%P;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值