洛谷P4559 [JSOI2018]列队(主席树)

题面

传送门

题解

首先考虑一个贪心,我们把所有的人按\(a_i\)排个序,那么排序后的第一个人到\(k\),第二个人到\(k+1\),...,第\(i\)个人到\(k+i-1\),易证这样一定是最优的

然后发现这里有一个很重要的性质,\(a_i\)互不相同。那么就必定存在一个点\(mid\),在\(mid\)左边(包括\(mid\))的空格子和人一样多,右边(不包括\(mid\))也一样多

那么很明显,\(mid\)左边的所有人都需要往右跑,\(mid\)右边的所有人都需要往左跑

然后来康康答案啊……先看看\(mid\)左边,第一个人要跑\(k-a_1\),第二个人要跑\(k+1-a_2\),...,第\(mid-k+1\)个人要跑\(mid-a_{mid-k+1}\)……

这不就等价于\(\sum_{i=k}^{mid}i-\sum_{a_i\leq mid}a_i\)嘛!

也就是说,左边的答案就是\(k\)\(mid\)的和,减去所有标号在\([l,r]\)区间内,且\(a_i\leq mid\)\(a_i\)之和,一发主席树就搞定了。右边同理

顺便这个\(mid\)也可以在主席树上二分得到

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
    if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e5+5,M=(N<<5);
ll sum[M],Pre[N],ss,res;int sz[M],lc[M],rc[M],rt[N],a[N];
int n,m,l,r,k,cnt,zz,lim=2e6;
inline bool cmp(const int &x,const int &y){return a[x]<a[y];}
inline ll calc(R int l,R int r){return (1ll*r*(r+1)>>1)-(1ll*(l-1)*l>>1);}
void update(int &p,int q,int l,int r,int x){
    p=++cnt,sz[p]=sz[q]+1,sum[p]=sum[q]+x;
    if(l==r)return;int mid=(l+r)>>1;
    x<=mid?(rc[p]=rc[q],update(lc[p],lc[q],l,mid,x)):
        (lc[p]=lc[q],update(rc[p],rc[q],mid+1,r,x));
}
void query(int p,int q,int l,int r,int x){
    if(!p||l==r)return zz+=sz[p]-sz[q],ss+=sum[p]-sum[q],void();
    int mid=(l+r)>>1,res=mid-x+1;
    zz+sz[lc[p]]-sz[lc[q]]<=res?query(lc[p],lc[q],l,mid,x):
        (zz+=sz[lc[p]]-sz[lc[q]],ss+=sum[lc[p]]-sum[lc[q]],query(rc[p],rc[q],mid+1,r,x));
}
int main(){
//  freopen("testdata.in","r",stdin);
//  freopen("testdata.out","w",stdout);
    n=read(),m=read();
    fp(i,1,n)a[i]=read(),Pre[i]=Pre[i-1]+a[i],update(rt[i],rt[i-1],1,lim,a[i]);
    while(m--){
        l=read(),r=read(),k=read(),ss=zz=0;
        query(rt[r],rt[l-1],1,lim,k);
        res=calc(k,k+zz-1)-ss+Pre[r]-Pre[l-1]-ss-calc(k+zz,k+r-l);
        print(res);
    }
    return Ot(),0;
}

转载于:https://www.cnblogs.com/bztMinamoto/p/10511487.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值