HDU_2149_基础博弈sg函数

Public Sale

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7190    Accepted Submission(s): 4267


Problem Description
虽然不想,但是现实总归是现实,Lele始终没有逃过退学的命运,因为他没有拿到奖学金。现在等待他的,就是像FarmJohn一样的农田生涯。

要种田得有田才行,Lele听说街上正在举行一场别开生面的拍卖会,拍卖的物品正好就是一块20亩的田地。于是,Lele带上他的全部积蓄,冲往拍卖会。

后来发现,整个拍卖会只有Lele和他的死对头Yueyue。

通过打听,Lele知道这场拍卖的规则是这样的:刚开始底价为0,两个人轮流开始加价,不过每次加价的幅度要在1~N之间,当价格大于或等于田地的成本价 M 时,主办方就把这块田地卖给这次叫价的人。

Lele和Yueyue虽然考试不行,但是对拍卖却十分精通,而且他们两个人都十分想得到这块田地。所以他们每次都是选对自己最有利的方式进行加价。

由于Lele字典序比Yueyue靠前,所以每次都是由Lele先开始加价,请问,第一次加价的时候,
Lele要出多少才能保证自己买得到这块地呢?
 

 

Input
本题目包含多组测试,请处理到文件结束(EOF)。每组测试占一行。
每组测试包含两个整数M和N(含义见题目描述,0<N,M<1100)
 

 

Output
对于每组数据,在一行里按递增的顺序输出Lele第一次可以加的价。两个数据之间用空格隔开。
如果Lele在第一次无论如何出价都无法买到这块土地,就输出"none"。
 

 

Sample Input
4 2
3 2
3 5
 

 

Sample Output
1
none
3 4 5
 
开始底价为0,两个人轮流开始加价,不过每次加价的幅度要在1~N之间,当价格大于或等于田地的成本价 M 时,主办方就把这块田地卖给这次叫价的人。请问,第一次加价的时候,Lele要出多少才能保证自己买得到这块地呢?
 
此题与拿石子的题类似,求出每个点的sg值,因为相当于两人往一个堆里加石子,所以此时求出的sg值为取石子时的sg值的倒序。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int main()
{
    int n,m,sg[1105];
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        memset(sg,0,sizeof(sg));
        for(int i=0; i<=m; i++)
            sg[m-i]=i%(n+1);
        int cnt=0;
        int ans[1105];
        for(int i=1; i<=n; i++)
        {
            if(sg[i]==0)
            {
                ans[cnt++]=i;
            }
        }
        if(cnt==0)
            printf("none\n");
        else
        {
            for(int i=0; i<cnt; i++)
            {
                printf("%d",ans[i]);
                if(i==cnt-1)
                    printf("\n");
                else
                    printf(" ");
            }
        }
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/jasonlixuetao/p/5890542.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值