马赫效应和应对方法

[blog]马赫效应和应对方法

//创建并且分析如何处理矩形的MachEffect
    Mat srcRect1(500,500,CV_8UC1);
    Mat srcRect2(500,500,CV_8UC1);
    for (int i=0;i<10;i++)
    {
        for (int j=0;j<50;j++)
        {
            srcRect1.row(i*50+j) = i*25;
        }
    }
    imshow("MachEffectRect1",srcRect1);
就是macheffect,它的应对方法就是知道数据产生的结构,然后构建连续梯度
for (int i=0;i<10;i++)
    {
        for (int j=0;j<50;j++)
        {
            srcRect2.row(i*50+j) = i*25;
        }
    }
 
    for (int i=0;i<9;i++)
    {    
        for (int j=0;j<50;j++)
        {
            srcRect2.row(25+i*50+j) = i*25+j/2;
        }
    }
  
    imshow("MachEffectRect2",srcRect2);
这里最为困难的,无疑就是“结构的获取”,比如对于这种情况
//创建任意情况的MachEffect
    Mat srcRnd = imread("macheffect.bmp");
    Mat RncClone = srcRnd.clone();
    Mat canny;
    blur(RncClone,RncClone,Size(10,10));
    Mat srcRnd2 = Mat::zeros(500,500,CV_8UC1);
    std::vector<std::vector<cv::Point>>contours;        
    int imaxSize = -1;int imaxNum = 0;
    for (int i=0;i<10;i++)
    {       
        dilate(RncClone,RncClone,Mat(10,10,CV_8UC1));
        threshold(RncClone,canny,100,255,THRESH_BINARY_INV);
        Canny(canny,canny,0,255);
        findContours(canny,contours,CV_RETR_LIST,CV_CHAIN_APPROX_NONE);
        for (int n=0;n<contours.size();n++)
        {
            int itmp = contours[n].size();
            if (itmp > imaxSize )
            {
                imaxSize = contours[n].size();
                imaxNum = n;
            }
        }
 
        drawContours(srcRnd2,contours,imaxNum,Scalar(255-25*i),-1);
        imaxNum = 0;
        imaxSize = -1;
        contours.clear();
        imshow("canny",canny);
        imshow("Rncclone",RncClone);
        imshow("srcRnd",srcRnd);
        imshow("srcRnd2",srcRnd2);
        //srcRnd2 = Mat::zeros(500,500,CV_8UC1); 
        waitKey();
    }
    
    他还是可以来做的,因为这个结构并不复杂,但是如果对于现实中产生的情况,其结构的获取会比较复杂。但是总的来说,获取结构,构建连续梯度替代直接的跳跃应该是问题的解决方法。



 



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值