把所有东西的生成函数搞出来。
发现结果是x*(1-x)^(-4)
然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4
然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方案数。
大概就是C(n+3,3)
前面还有一项是x,所以n--即可。
然后就A掉了。
#include <cstdio>
#include <cstring>
#define ll long long
const int inv=1668;
const int md=10007;
int n;char s[505];
int main()
{
scanf("%s",s+1);
for (int i=1;i<=strlen(s+1);++i)
n=(10*n+s[i]-'0')%md;
printf("%lld\n",((ll)n*(n+1)*(n+2)*inv)%(ll)md);
}