具体数学第二版第二章习题(2)

16 $x^{\underline{n}}(x-n)^{\underline{m}}=x^{\underline{m}}(x-m)^{\underline{n}}=x^{\underline{n+m}}$

17 当$m>0$时,有$x^{\overline{m}}=x(x+1)(x+2)..(x+m-2)(x+m-1)$

当$m=0$时,有$x^{\overline{0}}=1$

当$m<0$时,有$x^{\overline{m}}=\frac{1}{(x-1)(x-2)...(x-(|m|-1))(x-|m|)}$

对于第一个式子,$m=0$时显然都是1.

(1)当$m>0$时,

$(-1)^{m}(-x)^{\underline{m}}=(-1)^{m}(-x)(-x-1)(-x-2)...(-x-(m-1))=x(x+1)(x+2)...(x+m-1)=x^{\overline{m}}$

$(x+m-1)^{\underline{m}}=(x+m-1)(x+m-2)...(x+1)x=x^{\overline{m}}$

$\frac{1}{(x-1)^{\underline{-m}}}=(x-1+1)(x-1+2)...(x-1+m)=x^{\overline{m}}$

(2)当$m<0$时,不妨令$m=-m$,

$(-1)^{-m}(-x)^{\underline{-m}}=\frac{1}{(-1)^{m}}*\frac{1}{(-x+1)(-x+2)...(-x+m)}$

$=\frac{1}{(x-1)(x-2)(x-3)..(x-m)}=x^{\overline{-m}}$

$(x-m-1)^{\underline{-m}}=\frac{1}{(x-m-1+1)(x-m-1+2)...(x-m-1+m)}=x^{\overline{-m}}$

$\frac{1}{(x-1)^{\underline{m}}}=\frac{1}{(x-1)(x-1-1)...(x-1-(m-1))}=x^{\overline{-m}}$

第二个式子类似。

18 令$p$表示$\sum_{k \in K}a_{k}$绝对收敛; $q$表示存在有界常数$B$使得任意有限子集$F \in K$有$\sum_{k \in F}|a_{k}| \leq B$

(1)$p\rightarrow q$:若$\sum_{k \in K}a_{k}$绝对收敛,那么有$\sum_{k\in K}\Re a_{k},\sum_{k\in K}\Im  a_{k}$分别绝对收敛,而$|a_{k}|\leq (\Re a_{k})^{+}+(\Re a_{k})^{-}+(\Im  a_{k})^{+}+(\Im  a_{k})^{-}$,所以$\sum_{k\in F}|a_{k}|\leq \sum_{k\in F}((\Re a_{k})^{+}+(\Re a_{k})^{-}+(\Im  a_{k})^{+}+(\Im  a_{k})^{-})$,而后者绝对收敛,所以存在有界常数$B$满足条件;

(2)$q\rightarrow p$:由于$(\Re a_{k})^{+}\leq |a_{k}|,(\Re a_{k})^{-}\leq |a_{k}|,(\Im  a_{k})^{+}\leq |a_{k}|,(\Im  a_{k})^{-}\leq |a_{k}|$,所以存在有界常数$X,Y,Z,W$使得$\sum_{k\in F}(\Re a_{k})^{+}\leq X,\sum_{k\in F}(\Re a_{k})^{-}\leq Y,\sum_{k\in F}(\Im  a_{k})^{+}\leq Z,\sum_{k\in F}(\Im  a_{k})^{-}\leq W$,所以$\sum_{k\in K}\Re a_{k},\sum_{k\in K}\Im a_{k}$都是绝对收敛的,所以$\sum_{k \in K}a_{k}$绝对收敛

19 $a_{n}=2,b_{n}=n$,所以$s_{n}=\frac{a_{1}a_{2}...a_{n-1}}{b_{2}b_{3}...b_{n}}=\frac{2^{n-1}}{n!}$,两边同时乘以$s_{n}$得到:$\frac{2^{n}}{n!}T_{n}=\frac{2^{n-1}}{(n-1)!}T_{n-1}+3*2^{n-1}$,$T_{0}=5\rightarrow T_{1}=4$

令$P_{n}=\frac{2^{n}}{n!}T_{n}$,那么有$P_{n}=P_{n-1}+3*2^{n-1},P_{1}=8$,所以$P_{n}=3*(2^{n-1}+2^{n-2}+...+2^{1})+8=3*2^{n}+2$,所以$T_{n}=(3*2^{n}+2)*\frac{n!}{2^{n}}$,验证可得对于$n=0$也满足条件。

20 $\sum_{k=0}^{n}kH_{k}+(n+1)H_{n+1}$

$=\sum_{k=0}^{n}(k+1)H_{k+1}$

$=\sum_{k=0}^{n}kH_{k+1}+\sum_{k=0}^{n}H_{k+1}$

$=\sum_{k=0}^{n}k(H_{k}+\frac{1}{k+1})+\sum_{k=0}^{n}(H_{k}+\frac{1}{k+1})$

$=\sum_{k=0}^{n}kH_{k}+\sum_{k=0}^{n}\frac{k}{k+1}+\sum_{k=0}^{n}H_{k}+\sum_{k=0}^{n}\frac{1}{k+1}$

$=\sum_{k=0}^{n}kH_{k}+\sum_{k=0}^{n}H_{k}+n+1$

所以$\sum_{k=0}^{n}H_{k}=(n+1)(H_{n+1}-1)$

21 (1)一方面,$S_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}=1+\sum_{k=0}^{n}(-1)^{n+1-k}=1-\sum_{k=0}^{n}(-1)^{n-k}=1-S_{n}$,

另一方面,$S_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}=(-1)^{n+1}+\sum_{k=1}^{n+1}(-1)^{n+1-k}=(-1)^{n+1}+\sum_{k=0}^{n}(-1)^{n-k}=(-1)^{n+1}+S_{n}$

所以$S_{n}=\frac{1+(-1)^{n}}{2}$

 (2)一方面$T_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}k=\sum_{k=1}^{n+1}(-1)^{n+1-k}k=\sum_{1\leq k+1\leq n+1}(-1)^{n+1-(k+1)}(k+1)=\sum_{k=0}^{n}(-1)^{n-k}(k+1)=\sum_{k=0}^{n}(-1)^{n-k}k+\sum_{k=0}^{n}(-1)^{n-k}=T_{n}+S_{n}$

另一方面,$T_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}k=n+1+\sum_{k=0}^{n}(-1)^{n+1-k}k=n+1-\sum_{k=0}^{n+1}(-1)^{n-k}k=n+1-T_{n}$

所以$T_{n}=\frac{n+1-S_{n}}{2}=\frac{2n+1-(-1)^n}{4}$

(3)一方面$U_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}k^{2}=\sum_{k=1}^{n+1}(-1)^{n+1-k}k^{2}=\sum_{k=0}^{n}(-1)^{n-k}(k+1)^{2}=\sum_{k=0}^{n}(-1)^{n-k}k^{2}+2T_{n}+S_{n}=U_{n}+n+1$

另一方面,$U_{n+1}=\sum_{k=0}^{n+1}(-1)^{n+1-k}k^{2}=(n+1)^{2}+\sum_{k=0}^{n}(-1)^{n+1-k}k^{2}=(n+1)^{2}-U_{n}$

所以$U_{n}=\frac{n(n+1)}{2}$

22 直接证明下面的一般式。

$\sum_{1\leq j < k \leq n}(a_{j}b_{k}-a_{k}b_{j})(A_{j}B_{k}-A_{k}B_{j})$

$=\frac{1}{2}\sum_{1\leq j,k \leq n}(a_{j}b_{k}-a_{k}b_{j})(A_{j}B_{k}-A_{k}B_{j})$

$=\frac{1}{2}\sum_{1\leq j,k \leq n}(a_{j}b_{k}A_{j}B_{k}-a_{k}b_{j}A_{j}B_{k}-a_{j}b_{k}A_{k}B_{j}+a_{k}b_{j}A_{k}B_{j})$

$=\sum_{1\leq j,k \leq n}(a_{j}b_{k}A_{j}B_{k}-a_{k}b_{j}A_{j}B_{k})$

$=\left (\sum_{k=1}^{n}a_{k}A_{k}  \right )\left (\sum_{k=1}^{n}b_{k}B_{k}  \right )-\left (\sum_{k=1}^{n}a_{k}B_{k}  \right )\left (\sum_{k=1}^{n}b_{k}A_{k}  \right )$

23 (1)$\sum_{k=1}^{n}\frac{2k+1}{k(k+1)}=\sum_{k=1}^{n}\frac{k+(k+1)}{k(k+1)}=\sum_{k=1}^{n}(\frac{1}{k}+\frac{1}{k+1})=2H_{n}-\frac{n}{n+1}$

(2)令$u(x)=2x+1,\Delta v(x)=\frac{1}{x(x+1)}=(x-1)^{\underline{-2}}$,所以$\Delta u(x)=u(x+1)-u(x)=2,v(x)=-(x-1)^{\underline{-1}}=-\frac{1}{x},E_{v}(x)=-\frac{1}{x+1}$,所以$\sum (2x+1)\frac{1}{x(x+1)}\delta x=(2x+1)(-\frac{1}{x})-\sum (-\frac{2}{x+1})\delta x=-2-\frac{1}{x}+2H_{x}+C$,

所以$\sum_{k=1}^{n}\frac{2k+1}{k(k+1)}$

$= \sum_{1}^{n+1}(2x+1)\frac{1}{x(x+1)}\delta x$

$=\left (-2-\frac{1}{x}+2H_{x}  \right )|_{1}^{n+1}$

$=(-2-\frac{1}{n+1}+2H_{n+1})-(-2-1+2H_{1})=2H_{n}-\frac{n}{n+1}$

24 令$u(x)=H_{x},\Delta v(x)=\frac{1}{(x+1)(x+2)}=x^{\underline{-2}}$,所以$\Delta u(x)=\frac{1}{x+1},v(x)=-x^{\underline{-1}}=-\frac{1}{x+1}$,所以$E_{v}(x)=-\frac{1}{x+2}$,

所以$\sum H_{x}\frac{1}{(x+1)(x+2)}\delta x$

$=\sum u_{x}\Delta v_{x}\delta x$

$=u_{x}v_{x}-\sum E_{v}(x)\Delta u_{x}\delta  x$

$=-\frac{H_{x}}{x+1}-\sum (-\frac{1}{x+2})\frac{1}{x+1}\delta  x$

$=-\frac{H_{x}}{x+1}+\sum x^{\underline{-2}}\delta x$

$=-\frac{H_{x}}{x+1}-\frac{1}{x+1}$

$=-\frac{H_{x}+1}{x+1}$

所以$\sum_{0\leq k < n} H_{k}\frac{1}{(k+1)(k+2)}$

$=\left (-\frac{H_{x}+1}{x+1}  \right )|_{0}^{n}$

$=-\frac{H_{n}+1}{n+1}-(-1)=1-\frac{H_{n}+1}{n+1}$

25 $\sum_{k\in K}ca_{k}=c\sum_{k\in K}a_{k}\leftrightarrow \prod _{k\in K}a_{k}^{c}=\left (\prod _{k\in K}a_{k}  \right )^{c}$

$\sum_{k\in K}(a_{k}+b_{k})=\sum_{k\in K}a_{k}+\sum_{k\in K}b_{k}\leftrightarrow \prod _{k\in K}a_{k}b_{k}=\left (\prod _{k\in K}a_{k}  \right )\left (\prod _{k\in K}b_{k}  \right )$

26 $P^{2}=\left (\prod_{1\leq j, k\leq n}a_{j}a_{k}  \right )\left ( \prod _{k=1}^{n}a_{k}^{2} \right )$

$=\left (\prod_{1\leq k\leq n}a_{k}^{2n}  \right )\left ( \prod _{k=1}^{n}a_{k}^{2} \right )$

$= \prod _{k=1}^{n}a_{k}^{2n+2} \rightarrow P=\prod _{k=1}^{n}a_{k}^{n+1}$

27 $\Delta ((-2)^{\underline{x}})$

$=(-2)^{\underline{x+1}}-(-2)^{\underline{x}}$

$=(-2-x-1)(-2)^{\underline{x}}$

$=\frac{(-2)^{\underline{x}}(-2-x)(-2-(x+1))}{(-2-x)}$

$=-\frac{(-2)^{\underline{x+2}}}{x+2}$

所以$\Delta (-(-2)^{\underline{x-2}})=\frac{(-2)^{\underline{x}}}{x}$

所以$\sum \frac{(-2)^{\underline{x}}}{x}\delta x=-(-2)^{\underline{x-2}}$

所以$\sum_{k=1}^{n} \frac{(-2)^{\underline{k}}}{k}=\left (-(-2)^{\underline{x-2}}  \right )|_{1}^{n+1}=(-1)^{n}n!-1$

28 交换求和次序的时候,并不是绝对收敛的。所以不能交换求和次序。

29 $\sum_{k=1}^{n}\frac{(-1)^{k}k}{4k^{2}-1}$

$=\frac{1}{4}\sum_{k=1}^{n}(-1)^{k}(\frac{1}{2k-1}+\frac{1}{2k+1})$

$=\frac{1}{4}(-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}+\frac{1}{5}-\frac{1}{5}-\frac{1}{7}...+\frac{(-1)^{n}}{2n-1}+\frac{(-1)^{n}}{2n+1})$

$=\frac{1}{4}(-1+\frac{(-1)^{n}}{2n+1})$

30 设$n$可以表示成$k$个连续正整数之和,最小的正整数为$a$,即$n=\frac{(a+a+k-1)k}{2}$,所以$2a-1=\frac{2n}{k}-k$

所以$\frac{2n}{k}-k$是个奇数并且大于等于1.

令$n=2^{p}q,k=2^{t}r$,其中$q,r$是奇数。可以得到$t$要么等于0要么等于$p+1$,要么$k=1$.只有满足这三种情况之一,才能保证$\frac{2n}{k}-k$是个奇数并且大于等于1.

  (1)$k=1$,此时$a=n$,那么得到二元组$(k,a)=(1, n)$

(2)$t=p+1$,此时$k=2^{p+1}$,如果此时$\frac{2n}{k}-k=q-2^{p+1}\geq 1$,那么将得到一组$(k, a)$.否则由于$q\neq 2^{p+1}$,所以$q-2^{p+1}\leq -1$,所以$2^{p+1}-q\geq 1$,所以此时令$k^{'}=q$那么仍然有$\frac{2n}{k^{'}}-k^{'}\geq 1$,此时也可以得到一个解$(k^{'},a)$

(3)令$k=r|q$且$1<r<q$,也就是$k$是$n$的一个小于$q$大于1的奇数因子。同样如果此时$\frac{2n}{k}-k\geq 1$那么得到一组$(k,a)$,否则令$k^{'}=\frac{2n}{k}$,那么有$\frac{2n}{k^{'}}-k^{'}\geq 1$,此时得到一组解$(k^{'},a)$

总结来说,如果表示成$2a-1=\frac{2n}{k}-k=X-Y$,那么$X,Y$中有且仅有一个是$n$的奇数因子。如果可以证明在上面所有情况中的任意两种得到的二元组是不同的,那么可以得到一个结论就是对于$n$的任意一个奇数因子,都存在一组解。

证明分三种情况:

(1)对于任意的两个不同的奇数因子$k_{1},k_{2}$,如果$\frac{2n}{k_{1}}-k_{1}\geq 1,\frac{2n}{k_{2}}-k_{2}\geq 1$,那么一定要满足$\frac{2n}{k_{1}}-k_{1} \neq \frac{2n}{k_{2}}-k_{2}$

(2)对于任意的两个不同的奇数因子$k_{1},k_{2}$,如果$\frac{2n}{k_{1}}-k_{1}\geq 1,k_{2}-\frac{2n}{k_{2}}\geq 1$,那么一定要满足$\frac{2n}{k_{1}}-k_{1} \neq k_{2}-\frac{2n}{k_{2}}$

(3)对于任意的两个不同的奇数因子$k_{1},k_{2}$,如果$k_{1}-\frac{2n}{k_{1}}\geq 1,k_{2}-\frac{2n}{k_{2}}\geq 1$,那么一定要满足$k_{1}-\frac{2n}{k_{1}} \neq k_{2}-\frac{2n}{k_{2}}$

 其中(1)(3)类似,下面只证明(1)(2).

(1) $\frac{2n}{k_{1}}-k_{1} = \frac{2n}{k_{2}}-k_{2}\Leftrightarrow (2n-k_{1}^{2})k_{2}=(2n-k_{2}^{2})k_{1}\Leftrightarrow 2n=-k_{1}k_{2}$,显然不满足,所以等式不成立。

(2)$\frac{2n}{k_{1}}-k_{1} = k_{2}-\frac{2n}{k_{2}}\Leftrightarrow 2n=k_{1}k_{2}$,显然不满足,因为左边是偶数,右边是奇数。

下面就是如何计算$n$的奇数因子的个数,由于奇数因子是由若干个奇质数的乘积,所以令$n=2^{e}p_{1}^{t_{1}}p_{2}^{t_{2}}...p_{k}^{t_{k}}$,其中$p_{1},p_{2},...,p_{k}$是奇素数,那么$n$的奇因子的个数为$(t_{1}+1)(t_{2}+1)...(t_{k}+1)$

转载于:https://www.cnblogs.com/jianglangcaijin/p/9219967.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值