具体数学第二版第二章习题(1)

1 下面的是下界,上面的是 上界,所以这个取值范围为空,答案应该是0

2 $|x|$

3 $\sum_{0\leq k\leq 5}a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$

$\sum_{0\leq k^{2}\leq 5}a_{k^{2}}=\sum_{k=-2}^{2}a_{k^{2}}=a_{4}+a_{1}+a_{0}+a_{1}+a_{4}$

4 $\sum_{1\leq i<j<k\leq 4}a_{ijk}=\sum_{i=1}^{2}\sum_{j=i+1}^{3}\sum_{k=j+1}^{4}a_{ijk}=((a_{123}+a_{124})+a_{134})+a_{234}$

$\sum_{1\leq i<j<k\leq 4}a_{ijk}=\sum_{k=3}^{4}\sum_{j=2}^{k-1}\sum_{i=1}^{j-1}a_{ijk}=a_{123}+(a_{124}+(a_{134}+a_{234}))$

5 两个求和符号用了同样的下标符号,其实它们是不同的,所以不能约分。

6 $[1\leq j\leq n](n-j+1)$

7 $mx^{\overline{m-1}}$

8 当$m>0$时,为0;当$m=0$为1;当$m<0$时为$\frac{1}{|m|!}$

9 $x^{\overline{m+n}}=x^{\overline{m}}(x+m)^{\overline{n}}$

10 $u\Delta v+E_{v}\Delta u=v\Delta u+E_{u}\Delta v$,这样就对称了。

11 $a_{n}b_{n}-a_{0}b_{0}-\sum_{0\leq k < n}a_{k+1}(b_{k+1}-b_{k})$

$=a_{n}b_{n}-a_{0}b_{0}-\sum_{0\leq k < n}a_{k+1}b_{k+1}+\sum_{0\leq k < n}a_{k+1}b_{k}$

$=a_{n}b_{n}-a_{0}b_{0}-\sum_{1\leq k \leq n}a_{k}b_{k}+\sum_{0\leq k < n}a_{k+1}b_{k}$

$=-\sum_{0\leq k < n}a_{k}b_{k}+\sum_{0\leq k < n}a_{k+1}b_{k}$

$=\sum_{0\leq k < n}(a_{k+1}-a_{k})b_{k}$

12 (1)对于任意两个不同的$k_{1},k_{2}$,有$p(k_{1}) \neq p(k_{2})$

(2)对于任意一个整数$x$,存在唯一的一个整数$k$满足$p(k)=x$

13 令$R_{0}=\alpha,R_{n}=R_{n-1}+(-1)^{n}(\beta+\gamma n+\delta n^{2})$,所以$R_{n}=A(n)\alpha+B(n)\beta+C_{n}\gamma +D_{n}\delta $

(1)令$R_{n}=1$可以得到:$\alpha=1,\beta=\gamma =\delta =0$,所以$A_{n}=1$

(2)令$R_{n}=(-1)^{n}$,可以得到:$\alpha=-1,\beta=2,\gamma=\delta=0$,所以$-A(n)+2B(n)=(-1)^{n}$

(3)令$R_{n}=(-1)^{n}n$,可以得到:$-B(n)+2C(n)=(-1)^{n}n$

(4)令$R_{n}=(-1)^{n}n^{2}$,可以得到:$B(n)-2C(n)+2D(n)=(-1)^{n}n^{2}$.

其中$\sum_{k=0}^{n}(-1)^{k}k^{2}=D(n)=\frac{(-1)^{n}n^{2}-B(n)+2C(n)}{2}=\frac{(-1)^{n}n^{2}+(-1)^{n}n}{2}=\frac{(-1)^{n}(n^{2}+n)}{2}$

14 $\sum_{1\leq j \leq k \leq n}2^{k}=\sum_{1\leq j \leq n}\sum_{j\leq k \leq n}2^{k}=\sum_{1\leq j \leq n}(2^{n+1}-2^{j})=n2^{n+1}-\sum_{1\leq j \leq n}2^{j}=n2^{n+1}-(2^{n+1}-2)=(n-1)2^{n+1}+2$

15 $\sum_{k=1}^{n}k^{3}+\sum_{k=1}^{n}k^{2}$

$=\sum_{k=1}^{n}(k^{3}+k^{2})$

$=\sum_{k=1}^{n}k*k(k+1)$

$=\sum_{k=1}^{n}k\sum_{j=1}^{k}2j$

$=2\sum_{1\leq j \leq k \leq n}jk$

$=\sum_{1\leq j,k \leq n}jk+\sum_{1\leq j=k \leq n}jk=\left (\sum_{1\leq k \leq n}k  \right )^{2}+\sum_{k=1}^{n}k^{2}$

$=(\frac{n(n+1)}{2})^{2}+\sum_{k=1}^{n}k^{2}$

所以$\sum_{k=1}^{n}k^{3}=(\frac{n(n+1)}{2})^{2}$

转载于:https://www.cnblogs.com/jianglangcaijin/p/9175186.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值