《具体数学》部分习题解答2


有些Latex公式无法显示,这里使用图片代替

2.1

记号 ∑ k = 4 0 q k \sum\limits_{k=4}^0 q_k k=40qk 的含义是什么?
∑ k = 4 0 q k = q 4 + q 3 + q 2 + q 1 + q 0 \sum\limits_{k=4}^0 q_k = q_4 + q_3 + q_2 + q_1 + q_0 k=40qk=q4+q3+q2+q1+q0

2.2

化简表达式: x ( [ x > 0 ] − [ x < 0 ] ) x([x>0]-[x<0]) x([x>0][x<0])
在这里插入图片描述

2.3

在这里插入图片描述

2.4

在这里插入图片描述
在这里插入图片描述

2.5

下面的推理有何错误
( ∑ j = 1 n a j ) ( ∑ k = 1 n 1 a k ) = ∑ j = 1 n ∑ k = 1 n a j a k = ∑ k = 1 n ∑ k = 1 n a k a k = ∑ k = 1 n n = n 2 (\sum_{j=1}^n a_j)(\sum_{k=1}^n \frac{1}{a_k}) = \sum_{j=1}^n \sum_{k=1}^n \frac{a_j}{a_k} = \sum_{k=1}^n \sum_{k=1}^n \frac{a_k}{a_k} = \sum_{k=1}^n n = n^2 (j=1naj)(k=1nak1)=j=1nk=1nakaj=k=1nk=1nakak=k=1nn=n2
第一个等号是正确的。但第二个等号成立,仅当每个 a i a_i ai 都相等才可以。
可以列式子看一下(不妨令 n = 3 n=3 n=3 ):
在这里插入图片描述

2.6

作为 j j j n n n 的函数, ∑ k [ 1 ≤ j ≤ k ≤ n ] \sum\nolimits_{k} [1 \le j \le k \le n] k[1jkn] 的值是什么
∑ k [ 1 ≤ j ≤ k ≤ n ] = { 0   , j < 1   o r   n < j n − j + 1   , 1 ≤ j ≤ n = [ 1 ≤ j ≤ n ] ( n − j + 1 ) \sum\nolimits_{k} [1 \le j \le k \le n] = \begin{cases} 0 \ , \quad j<1 \ or \ n<j \\ n-j+1 \ , \quad 1 \le j \le n \end{cases} = [ 1 \le j \le n] (n-j+1) k[1jkn]={0 ,j<1 or n<jnj+1 ,1jn=[1jn](nj+1)

2.7

∇ f ( x ) = f ( x ) − f ( x − 1 ) \nabla f(x) = f(x) - f(x-1) f(x)=f(x)f(x1) ,则 ∇ ( x m ‾ ) \nabla (x^{\overline{m}}) (xm) 是什么
在这里插入图片描述

2.8

m m m 是给定的整数时, 0 m ‾ 0^{\underline{m}} 0m 的值是多少
在这里插入图片描述

2.9

对于上升阶乘幂,给出类似 x m + n ‾ = x m ‾ ( x − m ) n ‾ x^{\underline{m+n}} = x^{\underline{m}} (x-m)^{\underline{n}} xm+n=xm(xm)n 的指数法则,并用它来定义 x − n ‾ x^{\overline{-n}} xn
在这里插入图片描述

2.11

分部求和的一般法则 ∑ u Δ v = u v − ∑ E v Δ u \sum u \Delta v = uv - \sum Ev \Delta u uΔv=uvEvΔu 等价于
在这里插入图片描述

2.14

在这里插入图片描述

2.15

在这里插入图片描述

2.16

证明 x m ‾ ( x − n ) m ‾ = x n ‾ ( x − m ) n ‾ \frac{x^{\underline{m}}} {(x-n)^{\underline{m}}} = \frac{x^{\underline{n}}} {(x-m)^{\underline{n}}} (xn)mxm=(xm)nxn ,除非其中有一个分母为零
在这里插入图片描述

2.17

证明:对于所有的整数 m m m ,下面的公式可以用来在上升阶乘幂与下降阶乘幂之间进行转换:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.19

利用求和因子来求解递归式:
在这里插入图片描述
在这里插入图片描述

2.20

试用扰动法计算: ∑ k = 0 n k H k \sum_{k=0}^{n} k H_k k=0nkHk ,不过改为推导出 ∑ k = 0 n H k \sum_{k=0}^n H_k k=0nHk 的值
在这里插入图片描述

2.21

假设 n ≥ 0 n \ge 0 n0 ,用扰动法计算和式: S n = ∑ k = 0 n ( − 1 ) n − k   , T n = ∑ k = 0 n ( − 1 ) n − k k   , U n = ∑ k = 0 n ( − 1 ) n − k k 2 S_n = \sum_{k=0}^n (-1)^{n-k} \ , \quad T_n = \sum_{k=0}^n (-1)^{n-k} k \ , \quad U_n = \sum_{k=0}^n (-1)^{n-k} k^2 Sn=k=0n(1)nk ,Tn=k=0n(1)nkk ,Un=k=0n(1)nkk2
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.22

(不用归纳法)证明拉格朗日恒等式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.23

用两种方法计算和式: ∑ k = 1 n 2 k + 1 k ( k + 1 ) \sum_{k=1}^n \frac{2k+1}{k(k+1)} k=1nk(k+1)2k+1
a . a. a. 用部分分式: 1 k − 1 k + 1 \frac{1}{k} - \frac{1}{k+1} k1k+11 替换 1 k ( k + 1 ) \frac{1}{k(k+1)} k(k+1)1
b . b. b. 分部求和法
在这里插入图片描述

2.24

在这里插入图片描述

2.27

计算 Δ ( c x ‾ ) \Delta (c^{\underline{x}}) Δ(cx) ,并用它来推导出 ∑ k = 1 n ( − 2 ) k ‾ k \sum_{k=1}^n \frac{(-2)^{\underline{k}}}{k} k=1nk(2)k 的值
在这里插入图片描述

2.29

计算和式 ∑ k = 1 n ( − 1 ) k k 4 k 2 − 1 \sum_{k=1}^n \frac{(-1)^k k}{4k^2-1} k=1n4k21(1)kk
在这里插入图片描述

2.31

黎曼 z e t a zeta zeta 函数 ζ ( k ) \zeta (k) ζ(k) 定义为无限和式:
在这里插入图片描述
在这里插入图片描述
如有问题,欢迎大家指出,谢谢

  • 14
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值