基于朴素贝叶斯的垃圾邮件分类

使用sklearn包下的朴素贝叶斯算法,它包含三种模型——高斯模型、多项式模型和伯努利模型,详情可以参考朴素贝叶斯 — scikit-learn 0.18.1 documentation
本文将使用贝叶斯多项式模型类来解决英文邮件分类的问题。

导入各种包

import nltk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from tqdm import tqdm_notebook
from wordcloud import WordCloud
from sklearn.metrics import roc_curve, auc
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer

from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize, RegexpTokenizer

%matplotlib inline
复制代码

数据集

数据来自Spam Mails Dataset kaggle,其中正常邮件标记为ham/0,垃圾邮件为spam/1

data = pd.read_csv('spam_ham_dataset.csv')
data = data.iloc[:, 1:]
data.head()
复制代码
labeltextlabel_num
0hamSubject: enron methanol ; meter # : 988291\r\n...0
1hamSubject: hpl nom for january 9 , 2001\r\n( see...0
2hamSubject: neon retreat\r\nho ho ho , we ' re ar...0
3spamSubject: photoshop , windows , office . cheap ...1
4hamSubject: re : indian springs\r\nthis deal is t...0
data.info()
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5171 entries, 0 to 5170
Data columns (total 3 columns):
label        5171 non-null object
text         5171 non-null object
label_num    5171 non-null int64
dtypes: int64(1), object(2)
memory usage: 121.3+ KB
复制代码
print('这份数据包含{}条邮件'.format(data.shape[0]))
复制代码
这份数据包含5171条邮件
复制代码
print('正常邮件一共有{}条'.format(data['label_num'].value_counts()[0]))
print('垃圾邮件一共有{}条'.format(data['label_num'].value_counts()[1]))

plt.style.use('seaborn')
plt.figure(figsize=(6, 4), dpi=100)
data['label'].value_counts().plot(kind='bar')
复制代码
正常邮件一共有3672条
垃圾邮件一共有1499条
复制代码

新建DataFrame

新建一个DataFrame,所有的处理都在它里面进行

# 只需要text与label_num
new_data = data.iloc[:, 1:]
length = len(new_data)
print('邮件数量 length =', length)
new_data.head()
复制代码
邮件数量 length = 5171
复制代码
textlabel_num
0Subject: enron methanol ; meter # : 988291\r\n...0
1Subject: hpl nom for january 9 , 2001\r\n( see...0
2Subject: neon retreat\r\nho ho ho , we ' re ar...0
3Subject: photoshop , windows , office . cheap ...1
4Subject: re : indian springs\r\nthis deal is t...0

查看部分具体内容

for i in range(3):
    print(i, '\n', data['text'][i])
复制代码
0 
 Subject: enron methanol ; meter # : 988291
this is a follow up to the note i gave you on monday , 4 / 3 / 00 { preliminary
flow data provided by daren } .
please override pop ' s daily volume { presently zero } to reflect daily
activity you can obtain from gas control .
this change is needed asap for economics purposes .
1 
 Subject: hpl nom for january 9 , 2001
( see attached file : hplnol 09 . xls )
- hplnol 09 . xls
2 
 Subject: neon retreat
ho ho ho , we ' re around to that most wonderful time of the year - - - neon leaders retreat time !
i know that this time of year is extremely hectic , and that it ' s tough to think about anything past the holidays , but life does go on past the week of december 25 through january 1 , and that ' s what i ' d like you to think about for a minute .
on the calender that i handed out at the beginning of the fall semester , the retreat was scheduled for the weekend of january 5 - 6 . but because of a youth ministers conference that brad and dustin are connected with that week , we ' re going to change the date to the following weekend , january 12 - 13 . now comes the part you need to think about .
i think we all agree that it ' s important for us to get together and have some time to recharge our batteries before we get to far into the spring semester , but it can be a lot of trouble and difficult for us to get away without kids , etc . so , brad came up with a potential alternative for how we can get together on that weekend , and then you can let me know which you prefer .
the first option would be to have a retreat similar to what we ' ve done the past several years . this year we could go to the heartland country inn ( www . . com ) outside of brenham . it ' s a nice place , where we ' d have a 13 - bedroom and a 5 - bedroom house side by side . it ' s in the country , real relaxing , but also close to brenham and only about one hour and 15 minutes from here . we can golf , shop in the antique and craft stores in brenham , eat dinner together at the ranch , and spend time with each other . we ' d meet on saturday , and then return on sunday morning , just like what we ' ve done in the past .
the second option would be to stay here in houston , have dinner together at a nice restaurant , and then have dessert and a time for visiting and recharging at one of our homes on that saturday evening . this might be easier , but the trade off would be that we wouldn ' t have as much time together . i ' ll let you decide .
email me back with what would be your preference , and of course if you ' re available on that weekend . the democratic process will prevail - - majority vote will rule ! let me hear from you as soon as possible , preferably by the end of the weekend . and if the vote doesn ' t go your way , no complaining allowed ( like i tend to do ! )
have a great weekend , great golf , great fishing , great shopping , or whatever makes you happy !
bobby
复制代码

预处理

大小写

邮件中含有大小写,故将先单词替换为小写

new_data['text'] = new_data['text'].str.lower()
new_data.head()
复制代码
textlabel_num
0subject: enron methanol ; meter # : 988291\r\n...0
1subject: hpl nom for january 9 , 2001\r\n( see...0
2subject: neon retreat\r\nho ho ho , we ' re ar...0
3subject: photoshop , windows , office . cheap ...1
4subject: re : indian springs\r\nthis deal is t...0

停用词

使用停用词,邮件中出现的you、me、be等单词对分类没有影响,故可以将其禁用。还要注意的是所有邮件的开头中都含有单词subject(主题),我们也将其设为停用词。这里使用自然语言处理工具包nltk下的stopwords

stop_words = set(stopwords.words('english'))
stop_words.add('subject')
复制代码

分词

提取一长串句子中的每个单词,并且还要过滤掉各种符号,所以这里使用nltk下的RegexpTokenizer()函数,参数为正则表达式,例如:

string = 'I have a pen,I have an apple. (Uhh~)Apple-pen!' # 来自《PPAP》的歌词
RegexpTokenizer('[a-zA-Z]+').tokenize(string) # 过滤了所有的符号,返回一个列表
复制代码
['I', 'have', 'a', 'pen', 'I', 'have', 'an', 'apple', 'Uhh', 'Apple', 'pen']
复制代码

词形还原

在英语里面,一个单词有不同的时态,比如love与loves,只是时态不同,但是是同一个意思,于是就有了——词形还原与词干提取。而本文使用的词形还原方法。详情可以参考:词形还原工具对比 · ZMonster's Blog

这里先使用nltk包下的WordNetLemmatizer()函数,例如:

word = 'loves'
print('{}的原形为{}'.format(word, WordNetLemmatizer().lemmatize(word)))
复制代码
loves的原形为love
复制代码

把上面的所有操作一起实现,使用pandas的apply

def text_process(text):
    tokenizer = RegexpTokenizer('[a-z]+') # 只匹配单词,由于已经全为小写,故可以只写成[a-z]+
    lemmatizer = WordNetLemmatizer()
    token = tokenizer.tokenize(text) # 分词
    token = [lemmatizer.lemmatize(w) for w in token if lemmatizer.lemmatize(w) not in stop_words] # 停用词+词形还原
    return token
复制代码
new_data['text'] = new_data['text'].apply(text_process)
复制代码

现在我们得到了一个比较干净的数据集了

new_data.head()
复制代码
textlabel_num
0[enron, methanol, meter, follow, note, gave, m...0
1[hpl, nom, january, see, attached, file, hplno...0
2[neon, retreat, ho, ho, ho, around, wonderful,...0
3[photoshop, window, office, cheap, main, trend...1
4[indian, spring, deal, book, teco, pvr, revenu...0

训练集与测试集

将处理后的数据集分为训练集与测试集,比例为3:1

seed = 20190524 # 让实验具有重复性
X = new_data['text']
y = new_data['label_num']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed) # 75%作为训练集与25%作为测试集
复制代码
train = pd.concat([X_train, y_train], axis=1) # 训练集
test = pd.concat([X_test, y_test], axis=1) # 测试集

train.reset_index(drop=True, inplace=True) # 重设下标
test.reset_index(drop=True, inplace=True) # 同上
复制代码
print('训练集含有{}封邮件,测试集含有{}封邮件'.format(train.shape[0], test.shape[0]))
复制代码
训练集含有3878封邮件,测试集含有1293封邮件
复制代码

训练集中的垃圾邮件与正常邮件的数量

print(train['label_num'].value_counts())
plt.figure(figsize=(6, 4), dpi=100)
train['label_num'].value_counts().plot(kind='bar')
复制代码
0    2769
1    1109
Name: label_num, dtype: int64
复制代码

测试集中的垃圾邮件与正常邮件的数量

print(test['label_num'].value_counts())
plt.figure(figsize=(6, 4), dpi=100)
test['label_num'].value_counts().plot(kind='bar')
复制代码
0    903
1    390
Name: label_num, dtype: int64
复制代码

特征工程

如果把所有的单词都拿来统计,单词表里面的单词还是比较多的,这样让我们的模型跑起来也是比较慢的,故这里随机抽取正常邮件与垃圾邮件各10封内的单词作为单词表

ham_train = train[train['label_num'] == 0] # 正常邮件
spam_train = train[train['label_num'] == 1] # 垃圾邮件

ham_train_part = ham_train['text'].sample(10, random_state=seed) # 随机抽取的10封正常邮件
spam_train_part = spam_train['text'].sample(10, random_state=seed) # 随机抽取的10封垃圾邮件

part_words = [] # 部分的单词
for text in pd.concat([ham_train_part, spam_train_part]):
    part_words += text
复制代码
part_words_set = set(part_words)
print('单词表一共有{}个单词'.format(len(part_words_set)))
复制代码
单词表一共有1528个单词
复制代码

这就大大减少了单词量

CountVectorizer

接下来我们要统计每个单词出现的次数,使用sklearn的CountVectorizer()函数,如:

words = ['This is the first sentence', 'And this is the second sentence']
cv = CountVectorizer() # 参数lowercase=True,将字母转为小写,但数据已经是小写了
count = cv.fit_transform(words)
print('cv.vocabulary_:\n', cv.vocabulary_) # 返回一个字典
print('cv.get_feature_names:\n', cv.get_feature_names()) # 返回一个列表
print('count.toarray:\n', count.toarray()) # 返回序列
复制代码
cv.vocabulary_:
 {'this': 6, 'is': 2, 'the': 5, 'first': 1, 'sentence': 4, 'and': 0, 'second': 3}
cv.get_feature_names:
 ['and', 'first', 'is', 'second', 'sentence', 'the', 'this']
count.toarray:
 [[0 1 1 0 1 1 1]
 [1 0 1 1 1 1 1]]
复制代码

[0 1 1 0 1 1 1] 对应 ['and', 'first', 'is', 'second', 'sentence', 'the', 'this'],即'first'出现1次,'is'出现1次,如此类推

TfidfTransformer

接下来还要计算TF-IDF,它反映了单词在文本中的重要程度。使用sklearn包下的TfidfTransformer(),如:

tfidf = TfidfTransformer()
tfidf_matrix = tfidf.fit_transform(count)
print('idf:\n', tfidf.idf_) # 查看idf
print('tfidf:\n', tfidf_matrix.toarray()) # 查看tf-idf
复制代码
idf:
 [1.40546511 1.40546511 1.         1.40546511 1.         1.
 1.        ]
tfidf:
 [[0.         0.57496187 0.4090901  0.         0.4090901  0.4090901
  0.4090901 ]
 [0.49844628 0.         0.35464863 0.49844628 0.35464863 0.35464863
  0.35464863]]
复制代码

可以看到 [0 1 1 0 1 1 1] 变为了 [0. 0.57496187 0.4090901 0. 0.4090901 0.4090901 0.4090901 ]

添加新一列

现在正式开始各种计算,但是开始之前先把单词整理成句子,就是CountVectorizer认识的格式

# 将正常邮件与垃圾邮件的单词都整理为句子,单词间以空格相隔,CountVectorizer()的句子里,单词是以空格分隔的
train_part_texts = [' '.join(text) for text in np.concatenate((spam_train_part.values, ham_train_part.values))]
# 训练集所有的单词整理成句子
train_all_texts = [' '.join(text) for text in train['text']]
# 测试集所有的单词整理成句子
test_all_texts = [' '.join(text) for text in test['text']]
复制代码
cv = CountVectorizer()
part_fit = cv.fit(train_part_texts) # 以部分句子为参考
train_all_count = cv.transform(train_all_texts) # 对训练集所有邮件统计单词个数
test_all_count = cv.transform(test_all_texts) # 对测试集所有邮件统计单词个数
tfidf = TfidfTransformer()
train_tfidf_matrix = tfidf.fit_transform(train_all_count)
test_tfidf_matrix = tfidf.fit_transform(test_all_count)
复制代码
print('训练集', train_tfidf_matrix.shape)
print('测试集', test_tfidf_matrix.shape)
复制代码
训练集 (3878, 1513)
测试集 (1293, 1513)
复制代码

建立模型

mnb = MultinomialNB()
mnb.fit(train_tfidf_matrix, y_train)
复制代码
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
复制代码

模型在测试集上的正确率

mnb.score(test_tfidf_matrix, y_test)
复制代码
0.9265274555297757
复制代码
y_pred = mnb.predict_proba(test_tfidf_matrix)
fpr, tpr, thresholds = roc_curve(y_test, y_pred[:, 1])
auc = auc(fpr, tpr)
复制代码
# roc 曲线
plt.figure(figsize=(6, 4), dpi=100)
plt.plot(fpr, tpr)
plt.title('roc = {:.4f}'.format(auc))
plt.xlabel('fpr')
plt.ylabel('tpr')
复制代码
Text(0, 0.5, 'tpr')
复制代码

到此,就完成了从数据清理到建模的一整套流程了,当然其中还要许多东西可以完善的。

ipynb文件移步:github

参考资料

  1. 朴素贝叶斯 — scikit-learn 0.18.1 documentation
  2. 词形还原工具对比 · ZMonster's Blog
  3. Countvectorizer sklearn example - A Data Analyst
  4. sklearn——朴素贝叶斯文本分类
  5. sklearn 实现中文数据集的垃圾邮件分类

转载于:https://juejin.im/post/5ced43bb518825375324f37c

  • 10
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值