Excel—利用散点图计算相关系数

1、建立数组

image

2、创建散点图。

image

3、添加趋势线。

image

4、设立为线性函数,勾选显示公式、显示R^2值,R即为相关系数。

image

5、

image

 


备注:此外也可以使用=CORREL()函数对相关系数进行求值。其结果是一致的。

 

转载于:https://www.cnblogs.com/shadrach/p/6054516.html

### 使用PythonExcel导入数据并创建散点图 为了实现这一目标,可以采用`pandas`库来处理Excel文件中的数据,并使用`matplotlib`库来进行绘图操作。以下是具体方法以及示例代码。 #### 安装所需库 在开始之前,确保已经安装了必要的Python包,可以通过pip命令完成这些依赖项的安装: ```bash pip install pandas matplotlib openpyxl ``` #### 导入模块与加载数据 接下来,在Python环境中引入所需的模块,并指定要读取的Excel文件路径。这里假设有一个名为`example.xlsx`的工作表,其中包含了两列用于绘制散点图的数据。 ```python import pandas as pd import matplotlib.pyplot as plt # 加载Excel文件 file_path = 'path/to/your/example.xlsx' data_frame = pd.read_excel(file_path) # 假设第一列为X轴数据,第二列为Y轴数据 x_data = data_frame.iloc[:, 0].values y_data = data_frame.iloc[:, 1].values ``` #### 绘制散点图 有了上述准备之后就可以调用Matplotlib的功能来生成散点图了。下面这段代码不仅会显示图形本身,还会计算两个变量之间的皮尔逊相关系数和均方根误差(RMSE),并将它们作为文本添加到图表上[^2]。 ```python from scipy.stats import pearsonr from sklearn.metrics import mean_squared_error import numpy as np plt.figure(figsize=(8, 6)) plt.scatter(x_data, y_data, c='blue', marker='o') # 计算相关性和MSE correlation_coefficient, _ = pearsonr(x_data, y_data) mse_value = mean_squared_error(y_data, x_data) rmse_value = np.sqrt(mse_value) text_str = f"Pearson Correlation Coefficient: {correlation_coefficient:.4f}\n" text_str += f"Root Mean Squared Error (RMSE): {rmse_value:.4f}" props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) plt.text(0.05, 0.95, text_str, transform=plt.gca().transAxes, fontsize=12, verticalalignment='top', bbox=props) plt.title('Scatter Plot with Pearson and RMSE') plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') plt.grid(True) plt.show() ``` 此过程展示了如何利用Python高效地将存储于Excel文档内的数值型信息转换成直观易懂的可视化形式——即散点图;同时提供了关于这两组数据之间关联程度的重要统计指标说明[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值