The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "321" Given n and k, return the kth permutation sequence. Note: Given n will be between 1 and 9 inclusive.
看到这道题,第一时间就联系到了Next Permutation. 那道题是让找下一个稍大的Permutation, 而这里是找从小到大第K大的Permutation, 而最小的Permutation我们明显知道,那么用Next Permutation做Subroutine,做K次,不就找到了所需的Permutation了吗。Next Permutation时间复杂度为O(N), 这里就是O(N*k).
代码里面把Int数组拷贝成一个char数组,是为了方便转换成String。int[]数组是不能直接作为new String(array)的argument的。另一方面,这道题再次证实了数组是对象,而函数用对象做argument传的是对该对象的引用,在函数内改引用不会对原数组造成影响,但是在函数内改引用所指向的内容,就会有影响了。比如这里传数组num,而里面改num[i], 改的是内容,所以num改变了
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 char[] array = new char[n]; 4 for (int i=0; i<n; i++) { 5 array[i] = (char)('0' + i + 1); 6 } 7 for (int i=1; i<k; i++) { 8 helper(array); 9 } 10 return new String(array); 11 } 12 13 public void helper(char[] array) { 14 int i = 0; 15 int j = 0; 16 for (i=array.length-2; i>=0; i--) { 17 if (array[i] < array[i+1]) break; 18 } 19 if (i >= 0) { 20 for (j=i; j<array.length-1; j++) { 21 if (array[j+1] <= array[i]) break; 22 } 23 char temp = array[i]; 24 array[i] = array[j]; 25 array[j] = temp; 26 } 27 reverse(array, i+1); 28 } 29 30 public void reverse(char[] array, int index) { 31 int l = index; 32 int r = array.length - 1; 33 while (l < r) { 34 char temp = array[l]; 35 array[l] = array[r]; 36 array[r] = temp; 37 l++; 38 r--; 39 } 40 } 41 }
我这个方法很直接,但是时间复杂度O(N*k)应该比较大,因为k是可以取值到N!的,虽然通过了OJ,但是还是不太好。 网上看到一些做法,均是把它当做一道找规律的数学题目。我们知道,n个数的permutation总共有n阶乘个,基于这个性质我们可以得到某一位对应的数字是哪一个。思路是这样的,比如当前长度是n,我们知道每个相同的起始元素对应(n-1)!个permutation,也就是(n-1)!个permutation后会换一个起始元素。因此,只要当前的k除以(n-1)!,得到的数字就是当前的index,如此就可以得到对应的元素,而k % (n-1)! 得到的数字就是当前剩余数组的index,如此递推直到数组中没有元素结束。实现中我们要维护一个数组来记录当前的元素,每次得到一个元素加入结果数组,然后从剩余数组中移除,因此空间复杂度是O(n)。时间上总共需要n个回合,而每次删除元素如果是用数组需要O(n),所以总共是O(n^2)。这里如果不移除元素也需要对元素做标记,所以要判断第一个还是个线性的操作。
第二遍做法:
LISHI's
We actually can calculate the sequence. For sequences with n numbers, it is composed by n segments of sequences with n-1 numbers. The number of (n-1) sequences in each segment is (n-1)!. So if we are looking for kth n sequence, it is in (k/(n-1)!)th or (k/(n-1)!+1)th segment (boundary case considerred) which is means the number in the first place should be the (k/(n-1)!)th available number between 1 and n. The number of sequences we should count in this segment to find the target is (k%(n-1)!)th sequence in this segement. With this recurrence formula, we can directly calculate the string one place by one place.
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 if (n<=0 || k<=0) return ""; 4 StringBuffer res = new StringBuffer(); 5 int factorial = 1; 6 for (int i=2; i<n; i++) { 7 factorial *= i; 8 } 9 ArrayList<Integer> num = new ArrayList<Integer>(); 10 for (int i=1; i<=n; i++) { 11 num.add(i); 12 } 13 int round = n - 1; 14 k--; 15 while (round >= 0) { 16 int index = k / factorial; 17 k %= factorial; 18 res.append(num.get(index)); 19 num.remove(index); 20 if (round > 0) { 21 factorial /= round; 22 } 23 round--; 24 } 25 return res.toString(); 26 } 27 }
说明:num数组中按顺序存着1-n这n个数;每找到一个index,把它加入res的同时,把该index元素从数组删除. 这样不会重复利用某个数组元素
k--目的是让下标从0开始,这样下标就是从0到n-1,更好地跟数组下标匹配(这样每(n-1)!个数它们的第一个元素都是一样的)。
factorial最开始是(n-1)!,然后(n-2)!。。。跟数组剩余元素个数有关(每次减一)
因为答案有n位,所以round有n轮,一轮确定一位数。这里因为正好factorial要依次除n-1, n-2, n-3...所以干脆就让round计数从n-1到0