那些年我读过的Blog(Ⅰ)

近期发现自己已经很久很久没有写过文章,其中包括公开的和非公开的Blog,于是自己去翻了以前很多关注的人的Blog,发现也已经有很大一部分没有更新了,遂有了本文,梳理一下自己那些年关注过并且现在已经不再更新的Blog。

我是从2009年下半年开始看Blog的1,一直保持较高频率的时间看了4年,是这些Blog的文章伴随了我的成长,一路走来。

技术类Blog

刘未鹏

在我这里,刘未鹏是对我影响最大的,他的文章,涵盖了技术(计算机系统、算法、编程、机器学习)、心智思维、数学这些领域,常常有跨领域的交叉解释。读他的文章,对我的心智和思维提升很多。

他在2009年毕业之前在CSDN写文章,后面申请了独立域名,就换了新的地方继续写,2012年之前,Blog的更新还是比较多的,在这之后,就很少很少写了,在这之后关注的领域也更多在了育儿方面,猜测是跟自己小孩有些关系吧。

他的个人经历,在南大读了7年(本科+硕士),然后去微软亚研,然后去西雅图微软总部,现在估计在西雅图晒太阳逗女儿玩吧。

刘未鹏的Blog其实现在还在更新,只是非常慢了,大概1-2年一篇,所以我也把他暂列为了不更新Blog的作者List里面。

下面附上曾经的和现在的Blog地址:

其他

非技术类Blog

绝影

在我还对程序世界一无所知的时候,他通过故事给了我认知。他是《疯狂程序员》的作者,一直在CSDN上连载这个小说,可惜现在他的CSDN主页已经被封了。

四川人,常搞一些软件破解类的事。

CSDN主页:http://blog.csdn.net/hitetoshi,已经被封了。

其他

  • norains:https://blog.csdn.net/norains,小说《一个程序员的奋斗史》的作者,主要搞WinCE相关开发,小说连载完成后,再也没有更新了;
  • 王信文:http://verypig.com/,创办的莉莉丝,手游《刀塔传奇》火了之后,Blog再也没有更新了;
  • 陈小花:http://chenxiaohua.net/,王信文的老婆,Blog也几年没更新,偶尔写篇文章,当然现在早就转移到微信公众号写文章了,婚前的文章挺好的,婚后的文章,主题变了,看得少了;

上面列的都是曾经我看过优质并且更新的Blog,如今都不怎么更新了,还有一些遗漏的,不过不想花更多的精力去补全了。很多人不写了,大概有如下几点原因:

  • 年龄渐增,精力有限,没有那么多时间写出高质量的文章了,索性不写了;
  • 转移到别的平台去了:
    • 免费的微信公众号;
    • 付费的各种专栏,《得到》,《极客时间》等等;
  • 觉得写文章花时间和精力,收益小,不想写了。

然而我看了不少文章,自己却不爱写,可能还是输入的不够,写不出来吧。

下一篇文章我会写写我看过的Blog,目前还在更新的。

Footnotes:

1 因为这个时间我刚刚踏入大学的校门,大学之前几乎没有网络,对Blog也是一无所知。

转载于:https://www.cnblogs.com/karottc/p/9184861.html

内容概要:本文围绕基于支持向量机的电力短期负荷预测方法展开基于支持向量机的电力短期负荷预测方法研究——最小二乘支持向量机、标准粒子群算法支持向量机与改进粒子群算法支持向量机的对比分析(Matlab代码实现)研究,重点对比分析了三种方法:最小二乘支持向量机(LSSVM)、标准粒子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章详细介绍了各模型的构建过程与优化机制,并通过Matlab代码实现对电力负荷数据进行预测,评估不同方法在预测精度、收敛速度和稳定性方面的性能差异。研究旨在为电力系统调度提供高精度的短期负荷预测方案,提升电网运行效率与可靠性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的科研人员、电气工程及相关专业的研究生或高级本科生;对机器学习在能源领域应用感兴趣的技术人员。; 使用场景及目标:①应用于电力系统短期负荷预测的实际建模与仿真;②比较不同优化算法对支持向量机预测性能的影响;③为相关课题研究提供可复现的代码参考和技术路线支持。; 阅读建议:建议读者结合文中提供的Matlab代码,深入理解每种支持向量机模型的参数设置与优化流程,动手实践以掌握算法细节,并可通过更换数据集进一步验证模型泛化能力。
【源码免费下载链接】:https://renmaiwang.cn/s/qaiji 18、MapReduce的计数器与通过MapReduce读取_写入数据库示例网址: input files to process”表示处理的总输入文件数量,“number of splits”指示文件被分割成多少个块进行处理,“Running job”显示作业的状态等。自定义计数器则是开发者根据实际需求创建的,用于跟踪特定任务的特定指标。开发者可以在Mapper或Reducer类中增加自定义计数器,然后在代码中增加计数器的值。这样,当作业完成后,可以通过查看计数器的值来分析程序的行为和性能。接下来,我们将讨论如何通过MapReduce与数据库交互,尤其是MySQL数据库。在大数据场景下,有时需要将MapReduce处理的结果存储到关系型数据库中,或者从数据库中读取数据进行处理。Hadoop提供了JDBC(Java Database Connectivity)接口,使得MapReduce作业能够与数据库进行连接和操作。要实现MapReduce读取数据库,首先需要在Mapper类中加载数据库驱动并建立连接。然后,可以在map()方法中使用SQL查询获取所需数据。在Reduce阶段,可以对数据进行进一步处理和聚合,最后将结果写入到数据库中。对于写入数据库,通常在Reducer类的reduce()方法或cleanup()方法中进行,将处理后的数据转换为适合数据库存储的格式,然后通过JDBC API执行插入、更新或删除等操作。需要注意的是,由于MapReduce作业可能涉及大量的数据写入,因此需要考虑数据库的并发处理能力和性能优化策略。总结一下,MapReduce的计数器提供了强大的监控和调试能力,而通过MapReduce与数据库的交互则扩展了大数据处理的应用场景。开发者可以根据需求利用计数器来优化作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值