转载 乘法逆元

 数学公式支持不能。。只能截图

b在模m 下存在逆元的条件: b与m互质( 即gcd(b,m) == 1 )。

求逆元又分三种方法,拓展欧几里得法,欧拉函数法,费小马法。从一般到特殊吧:

 1、拓展欧几里得法:

  要求:a与m互质。

代码:

 

 
void ext_gcd(int a, int b, int &d, int &x, int &y)
{
    if(!b)
    {
        d = a;
        x = 1;
        y = 0;
    }
    else
    {
        ext_gcd(b, a%b, d, y, x);
        y -= x*(a/b);
    }
}

int mod_inverse(int a, int m)
{
    int x, y,d;
    ext_gcd(a, m, d, x, y);
    return (m + x % m) % m;
}
 

 

 

2、欧拉函数法

  要求:b与m互质。

  

 

代码:

 

 
int eurler_phi(int n)
{
    int res = n;
    for(int i = 2; i * i <= n; i++){
        if(n % i == 0){
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n != 1) res = res / n * (n - 1);
    return res;
}
 

 

 

3、费小马定理法

 

 

代码:可用快速幂幂

转载于:https://www.cnblogs.com/radiumlrb/p/5930758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值