模运算的乘法逆元

模运算在加法和乘法中适用,但不适用于除法。乘法逆元是指满足a * b ≡ 1 (mod p)条件的b。通过扩展欧几里得算法或费马小定理可以求得模乘法逆元,用于解决模运算中的除法问题。如果gcd(b, p) != 1,则不存在模乘法逆元。" 47151195,5115211,Android AutoCompleteTextView详解与应用,"['Android开发', '布局', 'UI组件']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二元运算符  ‘≡’: 当 a%p = b%p 时,a ≡ b ( mod p )

模运算对于 加法 和 乘法 同样适用,也就是说,如果 a ≡ a` (mod p) 和 b ≡ b` (mod p),那么

       a + b ≡ a` + b` (mod p)

       a * b ≡ a` * b` (mod p)

对于 除法 却不适用

  存在  a / b mod p  !=  a` / b` mod p

模乘法逆元:若 a * b ≡ 1 (mod p),则称 a 为 b 的模乘法逆元(在mod p 的情况下),或称 b 为 a 的模乘法逆元(在mod p 的情况下)

       假设  a / b ≡ c (mod p),b * x ≡ 1 (mod p)  

       那么  a * x ≡ c (mod p)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值