费马小定理

费马小定理简述

本篇内容参考百度百科

定理内容

p 是质数, ap 互质,那么 a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv1(mod~p) ap11(mod p)

证明

引理1

abc是任意3个整数,m 为正整数且 mc 互质(之后写作 ( m , c ) = 1 (m,c)=1 (m,c)=1),则当 a c ≡ b c ( m o d   m ) ac\equiv{bc}(mod~m) acbc(mod m)时,有 a ≡ b ( m o d   m ) a\equiv{b}(mod~m) ab(mod m)

引理1证明

可知: ( a − b ) c ≡ 0 ( m o d   m ) (a-b)c\equiv{0}(mod~m) (ab)c0(mod m) ( a − b ) c = k m ( k 为 整 数 ) (a-b)c=km(k为整数) (ab)c=km(k)由于 ( m , c ) = 1 (m,c)=1 (m,c)=1,所以 c 可约去,有 a − b ≡ 0 ( m o d   m ) a-b\equiv0(mod~m) ab0(mod m) a ≡ b ( m o d   m ) a\equiv{b}(mod~m) ab(mod m)

引理2

m 是大于1的整数, a 是整数且 ( m , a ) = 1 (m,a)=1 (m,a)=1。如果 { b [ i ] } ( i ∈ [ 1 , m ] ) \{b[i]\}(i\in[1,m]) {b[i]}(i[1,m])是模 m 的一个完全剩余系,则 { a ⋅ b [ i ] } ( i ∈ [ 1 , m ] ) \{a·b[i]\}(i\in[1,m]) {ab[i]}(i[1,m])也是模 m 的一个完全剩余系。

引理2证明

若存在两个整数 a ⋅ b [ i ] , a ⋅ b [ j ] a·b[i],a·b[j] ab[i],ab[j]同余,那么 a ⋅ b [ i ] ≡ a ⋅ b [ j ] ( m o d   m ) a·b[i]\equiv{a·b[j]}(mod~m) ab[i]ab[j](mod m)由引理1 b [ i ] ≡ b [ j ] ( m o d   m ) b[i]\equiv{b[j](mod~m)} b[i]b[j](mod m)与原定义矛盾,故不存在两个整数 a ⋅ b [ i ] , a ⋅ b [ j ] a·b[i],a·b[j] ab[i],ab[j]同余。
所以 { a ⋅ b [ i ] } ( i ∈ [ 1 , m ] ) \{a·b[i]\}(i\in[1,m]) {ab[i]}(i[1,m])是模 m 的一个完全剩余系

模运算乘法的性质

若有 a ≡ b ( m o d   m ) , p ≡ q ( m o d   m ) a\equiv{b}(mod~m),p\equiv{q}(mod~m) ab(mod m)pq(mod m)那么有 a ⋅ p ≡ b ⋅ q ( m o d   m ) a·p\equiv{b·q}(mod~m) apbq(mod m)证明:因为 a = k 1 m + b , p = k 2 m + q a=k_{1}m+b,p=k_{2}m+q a=k1m+bp=k2m+q a ⋅ p = k 1 k 2 m 2 + ( k 1 q + k 2 b ) m + b ⋅ q a·p=k_{1}k_{2}m^2+(k_{1}q+k_{2}b)m+b·q ap=k1k2m2+(k1q+k2b)m+bq于是 a ⋅ p ≡ b ⋅ q ( m o d   m ) a·p\equiv{b·q}(mod~m) apbq(mod m)

费马小定理证明

p 是一个大于1的素数,构造 p 的一个完全剩余系 { i } ( i ∈ [ 1 , p − 1 ] ) \{i\}(i\in[1,p-1]) {i}(i[1,p1]),设 a 是与 p 互质的整数,由引理2, { a ⋅ i } ( i ∈ [ 1 , p − 1 ] ) \{a·i\}(i\in[1,p-1]) {ai}(i[1,p1])也是 p 的一个完全剩余系。
所以对于每一个 i ( i ∈ [ 1 , p − 1 ] ) i(i\in[1,p-1]) i(i[1,p1]),总存在一个 j j j 使得 i ≡ a ⋅ j ( m o d   p ) i\equiv{a·j}(mod~p) iaj(mod p)将每个方程相乘得: ( p − 1 ) ! ≡ ( p − 1 ) ! ∗ a p − 1 ( m o d   p ) (p-1)!\equiv(p-1)!*a^{p-1}(mod~p) (p1)!(p1)!ap1(mod p) p 显然与 (p-1)! 互质,根据引理1: a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv1(mod~p) ap11(mod p)

费马小定理求逆元

p 是质数, a 是与 p 互质的整数,则在 p 模中,a 的逆元是 a p − 2 a^{p-2} ap2,因为: a ⋅ a p − 2 ≡ a p − 1 ≡ 1 ( m o d   p ) a·a^{p-2}\equiv{a^{p-1}}\equiv1(mod~p) aap2ap11(mod p)

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值