函数的对称性习题

例1已知函数\(f(x)=x^3-x^2-x+\cfrac{11}{27}\),求证:函数\(f(x)\)的图像关于点\((\cfrac{1}{3},0)\)对称。

法1:利用思路\(f(\cfrac{2}{3}-x)+f(x)=0\)证明;

\(f(\cfrac{2}{3}-x)=(\cfrac{2}{3}-x)^3-(\cfrac{2}{3}-x)^2-(\cfrac{2}{3}-x)+\cfrac{11}{27}\)

\(=\cdots\)

故有\(f(\cfrac{2}{3}-x)+f(x)=0\)

即函数\(f(x)\)的图像关于点\((\cfrac{1}{3},0)\)对称。

法2:将函数\(f(x)\)向左平移\(\cfrac{1}{3}\)个单位,得到\(f(x+\cfrac{1}{3})=x^3-\cfrac{4}{3}x=g(x)\)

由于\(g(-x)=-x^3+\cfrac{4}{3}x=-g(x)\),故证明了\(g(x)\)为奇函数,

从而将函数\(g(x)\)向右平移\(\cfrac{1}{3}\)个单位,对称中心变为点\((\cfrac{1}{3},0)\)

故证明函数\(f(x)\)的图像关于点\((\cfrac{1}{3},0)\)对称。

例2(2017•合肥模拟)(共用对称中心)
已知定义在\(R\)上的函数\(f(x)\)满足:\(f(x)=\begin{cases}x^2+2,&x\in[0,1)\\2-x^2,&x\in [-1,0)\end{cases}\)\(f(x+2)=f(x)\)\(g(x)=\cfrac{2x+5}{x+2}\)

则方程\(f(x)=g(x)\)在区间\([-5,1]\)上的所有实根之和为___________.
992978-20171125152422796-228438783.png

解析:\(g(x)=\cfrac{2x+5}{x+2}=2+\cfrac{1}{x+2}\),其对称中心是\((-2,2)\),由题意知函数\(f(x)\)的周期为\(2\)

则函数\(f(x)\)\(g(x)\)在区间\([-5,1]\)上的图像如图所示,由图可知函数\(f(x)\)

\(g(x)\)的图像在区间\([-5,1]\)上的交点为\(A、B、C\),易知点\(B\)的横坐标为\(-3\)

\(C\)的横坐标为\(t(0<t<1)\),则由对称性知点\(A\)的横坐标为\(-4-t\)

所以方程\(f(x)=g(x)\)在区间\([-5,1]\)上的所有实数根之和为\(-3+t+(-4-t)=-7\)

例3(2016高考理科数学全国卷2第12题)(共用对称中心)
已知函数\(f(x)(x\in R)\)满足\(f(-x)=2-f(x)\),若函数\(y=\cfrac{x+1}{x}\)与函数\(y=f(x)\)图像的交点为\((x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)\),则\(\sum\limits_{i=1}^m{(x_i+y_i)}\)的值为【】

A、\(0\) \(\hspace{2cm}\) B、\(m\) \(\hspace{2cm}\) C、\(2m\) \(\hspace{2cm}\) D、 \(4m\)

分析:由题目可知\(f(x)+f(-x)=2\),即函数\(f(x)\)图像关于点\((0,1)\)对称,

而函数\(y=\cfrac{x+1}{x}=1+\cfrac{1}{x}\)图像也关于点\((0,1)\)对称,即两个函数图像有相同的对称中心,

那么二者的交点个数一定有偶数个,如图所示, 可知对横坐标而言有\(\sum\limits_{i=1}^m{x_i}=0\)

而对纵坐标而言,成对的点的个数是\(\cfrac{m}{2}\)个,他们中的每一对满足\(\cfrac{y_1+y_m}{2}=1\)

\(y_1+y_m=2\),故\(\sum\limits_{i=1}^m{y_i}=2\cdot \cfrac{m}{2}=m\)

\(\sum\limits_{i=1}^m{(x_i+y_i)}=\sum\limits_{i=1}^m{x_i}+\sum\limits_{i=1}^m{y_i}=m\),故选B。

例4(2016高考文科数学全国卷2第12题)(共用对称轴)
已知函数\(f(x)(x\in R)\)满足\(f(x)=f(2-x)\),若函数\(y=|x^2-2x-3|\)与函数\(y=f(x)\)图像的交点为\((x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)\),则\(\sum\limits_{i=1}^m{x_i}\)的值为【】

A、\(0\) \(\hspace{2cm}\) B、\(m\) \(\hspace{2cm}\) C、\(2m\) \(\hspace{2cm}\) D、 \(4m\)
992978-20171125162022593-470763010.png

分析:函数\(f(x)(x\in R)\)满足\(f(x)=f(2-x)\),则函数的对称轴是直线\(x=1\)

而函数\(y=|x^2-2x-3|=|(x-1)^2-4|\)的对称轴也是直线\(x=1\),作出函数的图像如右图所示,

则二者的交点个数\(m\)一定是偶数个,两两配对的个数为\(\cfrac{m}{2}\),比如AB配对,

则有\(\cfrac{x_1+x_m}{2}=1\)\(x_1+x_m=2\),故\(\sum\limits_{i=1}^m{x_i}=\cfrac{m}{2}\cdot 2=m\),故选B。

例5(2015 秋•宁德期末)(共用对称轴))

已知函数\(f(x)\)满足\(f(x)=f(2-x)\),且\(x\in[-1,1]\)时,\(f(x)=1-x^2\),函数\(g(x)\)为偶函数,当\(x>0\)时,\(g(x)=\cfrac{1}{x}\),则函数\(f(x)(x\in[-1,3])\)的图像与函数\(g(x-1)\)的图像的所有交点的横坐标之和等于【 】

A.\(0\) \(\hspace{2cm}\) B.\(2\) \(\hspace{2cm}\) C.\(4\) \(\hspace{2cm}\) D.\(6\) \(\hspace{2cm}\)

分析:由\(f(x)=f(2-x)\),可知函数\(f(x)\)关于直线\(x=1\)对称,函数\(g(x)\)为偶函数,则函数\(g(x-1)\)的图像关于直线\(x=1\)对称,

做出函数的简图如右所示,由图可知,\(x_1+x_2=2\)\(x_3+x_4=2\)

992978-20180104205809940-2015779492.png

所有交点的横坐标之和等于\(2\times2=4\)。选C。

例6已知函数\(f(x)=\left\{\begin{array}{l}{ln(-x),x<0}\\{e^x+e^{2-x}-a,x\ge 0}\end{array}\right.\),若\(f(x)\)的所有零点之和为\(1\),则实数\(a\)的取值范围是\((2e,e^2+1)\)

【分析】容易求出其中一个零点\(x=-1\),然后研究\(x\ge 0\)时的函数\(f(x)\)的对称性,由图像的对称性和单调性得出函数在\(x\ge 0\)上的两个对称的零点的条件,从而得到\(a\)的取值范围。

【解答】当\(x<0\)时,由\(ln(-x)=0\),得到函数的一个零点是\(x=-1\)

\(x\ge 0\)时,\(f(x)=e^x+e^{2-x}-a\)\(f(2-x)=e^{2-x}+e^x-a\),故\(f(x)=f(2-x)\)

即此时函数\(f(x)\)的图像关于直线\(x=1\)对称(此时函数图像部分对称,若去掉\(x\ge 0\)的限制,函数图像完全对称),

此时函数若有零点,则必然满足\(x_1+x_2=2\),故所有零点之和为1,满足题意;

\(f'(x)=e^x-e^{2-x}\),当\(x\in (0,1)\)时,\(f'(x)<0\),即\(f(x)\)单调递减,当\(x\in (1,+\infty)\)时,\(f'(x)>0\),即\(f(x)\)单调递增,

故函数\(f(x)_{min}=f(1)=e^1+e^{2-1}-a=2e-a\)

但要使得函数\(f(x)\)有零点必须满足条件\(f(x)_{min}<0\)\(f(0)>0\),(这是为了保证函数有两个零点,且在\((0,1)\)段上的零点必须存在)

\(2e-a<0\)\(e^0+e^2-a>0\),解得\(2e<a<e^2+1\)

【点评】①本题目考查函数的零点,考查的很灵活,借助图像类似开口向上的抛物线的函数的对称性考查零点的存在性,很有创意,

而且我们一般很难想到研究函数的对称性。大多可能会朝对勾形函数做转化,结果思路变得模糊而不可解。

②对抽象函数而言,当我们看到条件\(f(x)=f(2-x)\),肯定能想到函数有对称轴\(x=1\),但碰到具体的函数我们取往往想不到用\(f(x)=f(2-x)\)来判断函数的对称性。

例7【两个函数关于某一点对称】给定命题,函数\(f(x)=sin(2x+\cfrac{\pi}{4})\)和函数\(g(x)=cos(2x-\cfrac{3\pi}{4})\)的图像关于原点对称,试判断命题的真假。

【分析】:如果函数\(f(x)\)的图像和函数\(g(x)\)的图像关于原点对称,

则函数\(f(x)\)上的任意一点\((x_0,y_0)\)关于原点的对称点\((-x_0,-y_0)\),必然在函数\(g(x)\)的图像上。

解答:先化简函数\(g(x)=cos(2x-\cfrac{3\pi}{4})=cos(2x-\cfrac{\pi}{4}-\cfrac{\pi}{2})\)

\(g(x)=cos[\cfrac{\pi}{2}-(2x-\cfrac{\pi}{4})]=sin(2x-\cfrac{\pi}{4})\)

\(f(x)=sin(2x+\cfrac{\pi}{4})\)

在函数\(f(x)\)图像上任意取一点\(P(x_0,y_0)\)

则其关于原点的对称点为\(P'(-x_0,-y_0)\)

将点\(P(x_0,y_0)\)代入函数\(f(x)\),得到\(y_0=sin(2x_0+\cfrac{\pi}{4})\)

\(-y_0=-sin(2x_0+\cfrac{\pi}{4})\),即\(-y_0=sin(2\cdot(-x_0)-\cfrac{\pi}{4})\)

即点\(P'(-x_0,-y_0)\)在函数\(g(x)=sin(2x-\cfrac{\pi}{4})\)上,

也即点\(P'(-x_0,-y_0)\)在函数\(g(x)=cos(2x-\cfrac{3\pi}{4})\)上,

又由点\(P(x_0,y_0)\)的任意性可知,

函数\(f(x)\)和函数\(g(x)\)的图像必然关于原点对称,

故为真命题。

例8若\(f(x)=\cfrac{3x-2}{2x-1}\),则\(f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})\)的值是多少?

法1:结合要求解的条件,我们尝试求解\(f(x)+f(1-x)\)的值,结果会发现:\(f(x)+f(1-x)=3\)

故有\(f(\cfrac{1}{11})+f(\cfrac{10}{11})=3\);\(f(\cfrac{2}{11})+f(\cfrac{9}{11})=3\);等等,

所以\(f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})\)

\(=5[f(\cfrac{1}{11})+f(\cfrac{10}{11})]=5\times 3=15\).

法2:将函数\(f(x)\)化为部分分式为\(f(x)=\cfrac{3}{2}-\cfrac{1}{2(2x-1)}\)

故函数\(f(x)\)的对称中心是\((\cfrac{1}{2},\cfrac{3}{2})\)

故根据函数的对称性的数学表达可以写出\(f(x)+f(1-x)=3\)

故所求式等于\(5\times 3=15\).

法3:本题目也可以说明倒序相加求和法。

例9(宝鸡中学第一次月考第15题)已知函数\(f(x)=\cfrac{x^2}{1+x^2}\),则\(2f(2)+2f(3)+\cdots+2f(2017)\) \(+f(\cfrac{1}{2})+f(\cfrac{1}{3})\) \(+\cdots+f(\cfrac{1}{2017})+\cfrac{1}{2^2}f(2)+\cfrac{1}{3^2}f(3)+\cdots+\cfrac{1}{2017^2}f(2017)\)的值为多少?

分析:这类题目往往从研究函数的特殊性质入手,当然研究的切入点就是给定式子的结构,注意到自变量有\(2\)\(\cfrac{1}{2}\),所以先探究\(f(x)+f(\cfrac{1}{x})\),看看它的结果,

\(f(x)+f(\cfrac{1}{x})=1\),可以将所求得式子一部分求值,其他部分变形为\(f(2)+\cfrac{1}{2^2}f(2)\),故接下来探究\(f(x)+\cfrac{1}{x^2}f(x)=1\)

故整个题目可解了。

解:由\(f(x)+f(\cfrac{1}{x})=1\)\(f(x)+\cfrac{1}{x^2}f(x)=1\),可将所求式子变形得到:
\(2f(2)+2f(3)+\cdots+2f(2017)+f(\cfrac{1}{2})+f(\cfrac{1}{3})+\cdots+f(\cfrac{1}{2017})+\cfrac{1}{2^2}f(2)\) \(+\cfrac{1}{3^2}f(3)+\cdots+\cfrac{1}{2017^2}f(2017)\)

\(=\{[f(2)+f(\cfrac{1}{2})]+[f(3)+f(\cfrac{1}{3})]+\cdots+[f(2017)+f(\cfrac{1}{2017})]\}\) \(+\{[f(2)+\cfrac{1}{2^2}f(2)]+[f(3)+\cfrac{1}{3^2}f(3)]+\cdots++[f(2017)+\cfrac{1}{2017^2}f(2017)]\}\)

\(=2016+2016=4032\).

例10【2019届高三理科数学函数的图像课时作业第17题】已知函数\(f(x)\)的图像与函数\(h(x)=x+\cfrac{1}{x}+2\)的图像关于点\(A(1,0)\)对称,

(1)求\(f(x)\)的解析式;

分析:设\(f(x)\)图像上任一点\(P(x,y)\)

则点\(P\)关于\((0,1)\)点的对称点\(P'(-x,2-y)\)必在\(h(x)\)的图像上,

\(2-y=-x-\cfrac{1}{x}+2\)

\(y=f(x)=x+\cfrac{1}{x}(x\neq 0)\)

(2)若\(g(x)=f(x)+\cfrac{a}{x}\),且\(g(x)\)在区间\((0,2]\)上为减函数,求实数\(a\)的取值范围。

分析:\(g(x)=f(x)+\cfrac{a}{x}=x+\cfrac{a+1}{x}\)

\(g'(x)=1-\cfrac{a+1}{x^2}\)

由于\(g(x)\)在区间\((0,2]\)上为减函数,

\(g'(x)=1-\cfrac{a+1}{x^2}\leq 0\)在区间\((0,2]\)上恒成立,

\(a+1\ge x^2\)在区间\((0,2]\)上恒成立,

\(a+1\ge 4\),即\(a\ge 3\)

故实数\(a\)的取值范围为\([3,+\infty)\)

转载于:https://www.cnblogs.com/wanghai0666/p/7895409.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值