抽象函数的对称性和周期性

本文探讨了抽象函数的对称性与周期性,包括轴对称、中心对称条件,以及周期函数的性质。通过多个命题阐述了抽象函数在不同对称条件下的表达式关系,并讨论了周期性的相关结论,例如周期函数的性质和周期的计算。同时,通过真题举例说明如何应用这些理论解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

抽象函数的对称性和周期性

  抽象函数 y = f ( x ) y=f(x) y=f(x)的对称性和周期性,是学习中的一个难点。由于抽象函数具备一般性,难于画出具体的图像,其对称性和周期性不容易理解,因此成为学习中的一个难点。

1 抽像函数在轴对称和中心对称下表达式所满足的关系

命题1 y = f ( x ) y=f(x) y=f(x)的定义域为 R R R,则其图像关于 x = a x=a x=a对称(轴对称),当且仅当 f ( x ) = f ( 2 a − x ) f(x)=f(2a-x) f(x)=f(2ax)

变式推广:若函数满足 f ( x + a ) = f ( b − x ) f(x+a)=f(b-x) f(x+a)=f(bx),则该函数关于 x = a + b 2 x=\frac{a+b}2 x=2a+b对称

命题2 y = f ( x ) y=f(x) y=f(x)的定义域为 R R R,则其图像关于点 ( a , b ) (a,b) (a,b)对称(中心对称),当且仅当 2 b − f ( x ) = f ( 2 a − x ) 2b-f(x)=f(2a-x) 2bf(x)=f(2ax)
注意:若 a a a f ( x ) f(x) f(x)的定义域中,则必然有 f ( a ) = b f(a)=b f(a)=b

变式推广:若函数满足 f ( x + a ) + f ( a − x ) = 2 b f(x+a)+f(a-x)=2b f(x+a)+f(ax)=2b,则该函数关于点 ( a , b ) (a,b) (a,b)对称

命题3 y = f ( x ) y=f(x) y=f(x)的定义域为 R R R,则函数 y = f ( x + a ) y=f(x+a) y=f(x+a),与函数 y = f ( b − x ) y=f(b-x) y=f(bx)的图像关于 x = b − a 2 x=\frac{b-a}2 x=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值