gcn实战_GNN 系列(二):图神经网络的“开山之作”GCN模型

本文介绍了图神经网络的基石——GCN模型,探讨了如何从谱图卷积推导出逐层更新模型,并在半监督学习中应用于节点分类。GCN通过近似谱图卷积,解决了图结构数据的处理问题,适用于社交网络、引文网络等场景。同时,文章指出GCN在大规模图处理中的内存挑战,并预告了后续优化方法。
摘要由CSDN通过智能技术生成

写在前面

这是我们介绍图神经网络的第一篇文章,取自Kipf et al. 2017,文章中提出的模型叫Graph Convolutional Network(GCN),个人认为可以看作是图神经网络的“开山之作”,因为GCN利用了近似的技巧推导出了一个简单而高效的模型,使得图像处理中的卷积操作能够简单得被用到图结构数据处理中来,后面各种图神经网络层出不穷,或多或少都受到这篇文章的启发。

目录

1、问题定义

2、图上的快速卷积近似

a 谱图卷积(Spectral Graph Convolutions)

b 逐层线性模型

3、半监督学习节点分类

a 传播公式解释

b 例子

4、后话

5、Reference

正文

1. 问题定义

考虑图(例如引文网络)中节点(例如文档)的分类问题,通常该图中只有一小部分节点有标签。这类问题可以划分到基于图的半监督学习问题中。为了对节点进行分类,首先我们可以利用节点自身的特征信息,除此之外,我们还可以利用图结构信息,因此一个典型的图半监督学习问题可以采用下面的学习策略:

这样的学习策略基于图中的相邻节点标签可能相同的假设。然而,这个假设可能会限制模型的能力,因为图的边不一定代表所连接节点相似。

因此,在这个工作中,作者不再显示的定义图结构信息的损失函数 Lreg, 而是使用神经网络模型f(X,A)直接对图结构进行编码,训练所有带标签的结点L0,来避免损失函数中的正则化项Lreg。

这篇文章的主要贡献是为图半监督分类任务设计了一个简单并且效果好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值