matlab 传递函数求截止频率,高分求解RC滤波电路的传递函数和截止频率

公告: 为响应国家净网行动,部分内容已经删除,感谢读者理解。

话题:高分求解RC滤波电路的传递函数和截止频率,请高手解答,

问题详情:麻烦高手解答一下这个电路的传递函数和截止频率(这个电路回答:呵呵,明早你来看,现在有点忙,先占个位置,电容参数请给出来,图像看不清楚 呵呵,晚上点钟才想起还有这么一档事,赶紧来做题,电容参数要带单位哦,给出了计算表达式,最终结果自己数,可以检验一下,以防计算错误,过程是没有错误的,就怕不小心计算错误了 为了表述方便,令标记C1C31,C2CL1,RR31,UoCL1两端电压 先求电路的微分方程,再求其传递函数。设电路的电流为i,则 Ui=Uc1+iR+Uo i=C1*(duc1/dt)=C2*(duo/dt) 从而 Ui=Uc1+R*C1*(duc1/dt)+Uo Ui=Uc1+R*C2*(duo/dt)+Uo 在初始条件下,对上两式进行拉氏变换得 Ui(s)=Uc1(s)+ sRC1Uc1(s)+ Uo(s) Ui(s)=Uc1(s)+ sRC2Uo(s)+ Uo(s) 传递函话题:二阶电压控制电压源型低通滤波器设计

问题详情:最好能设计出Rf和Rs的值~万分感谢回答:低通滤波器,截止频率100Hz,电容的选择间应该在10~0.1u之间,考虑标称值选择电容为4.u 根据R=1/2pi*f*C求出R为33 R1=R2 C1=C2 利用二阶滤波器的传递函数与表中n=2的函数联立求出Q=1/根号2 Q=1/(3-A) A=1.56 又因为A=1+Rf/Rs还已知运放两输入端电阻和应该相等所以有Rf并Rs等于二倍的R1,解得Rf为1.05K Rs为35K话题:怎么求含积分环节的传递函数的带宽

问题详情:系统的截止频率w是指系统闭环频率特的幅值下降

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 开环截止频率是指无反馈时系统的频率响应函数的截止频率,它是指设定的频率到达一定程度时,系统的增益会被削弱到一个很小的值,导致系统不能继续放大信号,而是将信号输出。 使用MATLAB求解开环截止频率可以通过以下步骤: 1. 建立系统传递函数H(s),其中s为复变量,表示拉普拉斯变换后的频域。 2. 使用matlab中的freqs函数计算系统的频率响应函数,即将H(s)带入freqs函数计算。 3. 使用plot函数将频率响应函数以频率为横坐标、振幅为纵坐标绘制出来。 4. 根据频率响应函数的曲线分析得到开环截止频率的位置,可以通过通过选择对应的频率得到截止频率的值。 例如,当我们建立了一个二阶低通滤波器系统传递函数H(s)为: H(s) = 1 / (s^2 + 2ξωns + ωn^2) 其中ξ为阻尼比,ωn为固有频率。 我们可以使用freqs函数计算系统的频率响应函数,代码如下: w = logspace(-1, 3, 1000); % 设定频率范围为0.1到1000 rad/s [num, den] = tfdata(H, 'v'); % 将系统传递函数H(s)转换为分子式和分母式 H_freq = freqs(num, den, w); % 计算频率响应函数 然后,我们可以使用plot函数将频率响应函数绘制出来: figure; semilogx(w, abs(H_freq)); xlabel('Frequency(rad/s)'); ylabel('Amplitude'); title('Frequency Response of Second Order Low-pass Filter'); 根据绘制出的频率响应函数曲线,可以得到开环截止频率的位置,我们可以通过选择对应的频率得到截止频率的值。 ### 回答2: 开环截止频率是指传递函数在没有任何反馈作用下,输出信号的幅度比输入信号幅度下降3dB的频率。这个频率通常是作为系统稳定性、带宽等因素的评估指标之一。 利用MATLAB可以方便地求解开环截止频率,具体步骤如下: 1. 定义传递函数 首先需要定义系统的传递函数,例如: G = tf([1 2], [1 3 2]); 表示系统的传递函数是 (s+2)/(s^2+3s+2)。 2. 画出Bode图 使用bode函数画出系统的Bode图: bode(G); Bode图可以显示出系统的频率响应特性。 3. 读取截止频率 观察Bode图中的曲线,可以找到幅度下降3dB的频率点。可以通过鼠标在Bode图上点击该点,并查看Command Window中的提示来读取到该频率值。也可以使用MATLAB中的findobj和get函数自动获取该点的坐标,并计算出对应的截止频率: h = findobj(gcf,'type','line'); x = get(h,'Xdata'); y = get(h,'Ydata'); f_cut = x(find(y < -3, 1)); 其中,f_cut 即为开环截止频率。 综上所述,使用MATLAB求解开环截止频率的方法主要是通过画出Bode图,找到幅度下降3dB的点,然后读取该点的频率值。这个过程可以使用MATLAB中的bode、findobj和get函数完成。 ### 回答3: MATLAB可以利用其工具箱中的信号处理工具箱来求解系统的开环截止频率。首先,需要定义系统的传递函数,这可以通过MATLAB中的tf函数来实现。定义完成后,可以使用bode函数来绘制系统的频率响应曲线。在这个曲线中,开环截止频率是指曲线与频率轴交点的位置。 要开环截止频率,需要在bode函数调用中添加一个额外的输出参数,以获取曲线和频率轴的交点频率。例如,假设我们定义一个传递函数为: G = tf([1 2], [1 3 2]); 则可以使用下面的代码调用bode函数并出交点频率: [bode_mag, bode_phase, bode_freq] = bode(G); bode_freq_cutoff = bode_freq(find(bode_mag<1, 1)); 在这里,bode函数会返回三个值:曲线在每个频率点的幅值、相位和对应的频率。bode_mag<1的意思是找到曲线与水平(幅值)轴相交的位置,即曲线下降到了0dB处。find(bode_mag<1, 1)的结果是找到这个位置的索引值,然后通过bode_freq索引到实际的频率值。这个值可以存储在bode_freq_cutoff中。 需要注意的是,bode函数默认使用对数频率轴来绘制频率响应曲线。如果希望使用线性轴,可以将bode函数的第二个输入参数设为{freq_range, 'linear'},其中freq_range是一个两个元素的向量,分别表示频率范围的起始点和终止点。 总之,在MATLAB求解系统的开环截止频率可以通过定义传递函数、使用bode函数以及解析其输出参数来完成。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值