numpy 数组传入函数_NumPy 统计函数

Python Numpy 教程 | 奇客谷教程​www.qikegu.com

章节Numpy 介绍

Numpy 安装

NumPy ndarray

NumPy 数据类型

NumPy 数组创建

NumPy 基于已有数据创建数组

NumPy 基于数值区间创建数组

NumPy 数组切片

NumPy 广播

NumPy 数组迭代

NumPy 位运算

NumPy 字符串函数

NumPy 数学函数

NumPy 统计函数

NumPy 排序、查找、计数

NumPy 副本和视图

NumPy 矩阵库函数

NumPy 线性代数

Numpy提供各种统计函数,用于数据统计分析。

从数组中找出最小和最大元素

函数numpy.amin()和numpy.amax()分别用于查找指定轴上,数组元素的最小值和最大值。

示例

import numpy as np

a = np.array([[2,10,20],[80,43,31],[22,43,10]])

print("原始数组:\n")

print(a)

print('\n')

print("数组中最小元素:", np.amin(a))

print("数组中最大元素:", np.amax(a))

print('\n')

print("数组列中最小元素:", np.amin(a,0))

print("数组列中最大元素:", np.amax(a,0))

print('\n')

print("数组行中最小元素:", np.amin(a,1))

print("数组行中最大元素:", np.amax(a,1))

输出

原始数组:

[[ 2 10 20]

[80 43 31]

[22 43 10]]

数组中最小元素: 2

数组中最大元素: 80

数组列中最小元素: [ 2 10 10]

数组列中最大元素: [80 43 31]

数组行中最小元素: [ 2 31 10]

数组行中最大元素: [20 80 43]

numpy.ptp()

返回数组某个轴方向的峰间值,即最大值最小值之差。

示例

import numpy as np

a = np.array([[2,10,20],[80,43,31],[22,43,10]])

print("原始数组:\n", a)

print('\n')

print("轴1 峰间值:", np.ptp(a,1))

print("轴0 峰间值:", np.ptp(a,0))

输出

原始数组:

[[ 2 10 20]

[80 43 31]

[22 43 10]]

轴1 峰间值: [18 49 33]

轴0 峰间值: [78 33 21]

numpy.percentile()

百分位数是统计中使用的度量,表示小于这个值的观察值占总数的百分比。

例如,第80个百分位数是这样一个值,它使得至少有80%的数据项小于或等于这个值,且至少有(100-80)%的数据项大于或等于这个值。

函数语法:

numpy.percentile(input, q, axis)

参数:input: 输入数组

q: 要计算的百分位数,在 0 ~ 100 之间

axis: 计算百分位数的轴方向,二维取值0,1

示例

import numpy as np

a = np.array([[2,10,20],[80,43,31],[22,43,10]])

print("原始数组:\n", a)

print('\n')

print("轴0 百分位数", np.percentile(a, 10,0))

print("轴1 百分位数", np.percentile(a, 10, 1))

输出

原始数组:

[[ 2 10 20]

[80 43 31]

[22 43 10]]

轴0 百分位数 [ 6. 16.6 12. ]

轴1 百分位数 [ 3.6 33.4 12.4]

计算数组项的中值、平均值、加权平均值

numpy.median()

中值是一组数值中,排在中间位置的值,可以指定轴方向。

numpy.mean()

计算数组的平均值,可以指定轴方向。

numpy.average()

计算数组的加权平均值,权重用另一个数组表示,并作为参数传入,可以指定轴方向。

考虑一个数组[1,2,3,4]和相应的权值[4,3,2,1],通过将对应元素的乘积相加,再除以权值的和来计算加权平均值。

加权平均值 = (14+23+32+41)/(4+3+2+1)

示例

import numpy as np

a = np.array([[1,2,3],[4,5,6],[7,8,9]])

print("原始数组:\n", a)

print('\n')

print("轴0 中值:", np.median(a, 0))

print("轴0 平均值:", np.mean(a, 0))

wt = np.array([0, 0, 10])

print("轴1 加权平均值:", np.average(a, 1, weights = wt))

输出

原始数组:

[[1 2 3]

[4 5 6]

[7 8 9]]

轴0 中值: [4. 5. 6.]

轴0 平均值: [4. 5. 6.]

轴1 加权平均值: [3. 6. 9.]

标准差与方差

numpy.std()

要计算标准差,可以使用std()函数。

标准差的公式:

std = sqrt(mean(abs(x - x.mean())**2))

numpy.std()

要计算方差,可以使用var()函数。

方差公式

var = mean(abs(x - x.mean())**2)

示例

import numpy as np

print (np.std([1,2,3,4]))

print (np.var([1,2,3,4]))

输出

1.118033988749895

1.25

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值