如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是
托普利茨矩阵。给定一个
M x N
的矩阵,当且仅当它是托普利茨矩阵时返回
True
。
示例 1:
输入:
matrix = [
[1,2,3,4],
[5,1,2,3],
[9,5,1,2]
]
输出: True
解释:
在上述矩阵中, 其对角线为:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。
各条对角线上的所有元素均相同, 因此答案是True。复制代码
示例 2:
输入:
matrix = [
[1,2],
[2,2]
]
输出: False
解释:
对角线"[1, 2]"上的元素不同。复制代码
说明:
-
matrix
是一个包含整数的二维数组。 matrix
的行数和列数均在[1, 20]
范围内。matrix[i][j]
包含的整数在[0, 99]
范围内。
思路
需要(matrix.length -1)* (matrix[0].length-1) 这么多次的对比,判断每个元素与其右下角元素是否相等 matrix[i][j] != matrix[i-1][j-1]
注意两个嵌套循环的顺序
/**
* @param {number[][]} matrix
* @return {boolean}
*/
var isToeplitzMatrix = function(matrix) {
for(let i = 0; i < matrix.length - 1; i++) {
for(let j = 0; j < matrix[0].length - 1; j++) {
if(matrix[i][j] !== matrix[i+1][j+1]){
return false
}
}
}
return true
};
复制代码