python做t检验_科学网—Python学生物统计---T检验---学习笔记6 - 邓飞的博文

T 检验是最基础的统计检验, 统计书中最开始的一章节, 主要用于连续变量的显著性检验, 分为:与固定值的T检验

配对样本T检验

独立样本T检验from scipy import statsimport pandas as pdimport numpy as npfrom statsmodels.formula.api import olsfrom statsmodels.stats.anova import anova_lmfrom statsmodels.stats.multicomp import pairwise_tukeyhsdimport matplotlib.pyplot as plt

6.1 T检验(与固定值)

这里, 与常量比较时, 用的是stats.ttest_lsamp函数

试验数据是一组5年生的树, 查看它们与8米的差异是否达到显著水平dat = pd.read_csv("6.1.csv")dat.head()

x08.0

17.9

27.9

38.1

48.2

print(stats.ttest_1samp(dat,8))Ttest_1sampResult(statistic=array([4.51858295]), pvalue=array([8.49191658e-05]))

6.2配对样本T检验

配对样本T检验, 用的是stats.ttest_rel()函数paired = pd.read_csv("6.2.csv")paired.head()

ab016.6818.68

120.6723.22

218.4221.42

318.0019.00

417.4418.92

stats.ttest_rel(paired["a"],paired["b

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这里我会使用jieba第三方库进行分词和词频统计,并使用wordcloud和matplotlib库制作词云图。请确认您已经安装了这些库。 首先,我们需要读取`水浒传.txt`文件并将其分词。 ```python import jieba # 读取文件 with open('水浒传.txt', 'r', encoding='utf-8') as f: text = f.read() # 分词 words = jieba.lcut(text) ``` 接下来,我们需要对分词结果进行词频统计。为了统计时适当考虑相同的人的不同叫法,我们可以使用一个字典来存储每个人的出现次数。 ```python # 人名称列表 names = ['宋江', '卢俊义', '吴用', '公孙胜', '关胜', '林冲', '秦明', '呼延灼', '花荣', '柴进', '李应', '朱仝', '鲁智深', '武松', '董平', '张清', '杨志', '徐宁', '索超', '戴宗', '刘唐', '李逵', '史进', '穆弘', '雷横', '李俊', '阮小二', '张横', '阮小五', '张顺', '阮小七', '杨雄', '石秀', '解珍', '解宝', '燕青', '朱武', '黄信', '孙立', '宣赞', '郝思文', '韩滔', '彭玘', '单廷珪', '魏定国', '萧让', '裴宣', '欧鹏', '邓飞', '燕顺', '杨林', '凌振', '蒋敬', '吕方', '郭盛', '安道全', '皇甫端', '王英', '扈三娘', '鲍旭', '樊瑞', '孔明', '孔亮', '项充', '李衮', '金大坚', '马麟', '童威', '童猛', '孟康', '侯健', '陈达', '杨春', '郑天寿', '陶宗旺', '宋清', '乐和', '龚旺', '丁得孙', '穆春', '曹正', '宋万', '杜迁', '薛永', '施恩', '李忠', '周通', '汤隆', '杜兴', '邹渊', '邹润', '朱贵', '朱富', '施琅', '李立', '杨瑞', '赵云', '段景住'] # 词频统计 word_count = {} for word in words: if word in names: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 ``` 最后,我们可以使用wordcloud和matplotlib库制作词云图。 ```python from wordcloud import WordCloud import matplotlib.pyplot as plt # 生成词云图 wc = WordCloud(background_color='white', font_path='msyh.ttc', width=800, height=600) wc.generate_from_frequencies(word_count) # 显示词云图 plt.imshow(wc, interpolation='bilinear') plt.axis('off') plt.show() ``` 完整代码如下: ```python import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt # 读取文件 with open('水浒传.txt', 'r', encoding='utf-8') as f: text = f.read() # 分词 words = jieba.lcut(text) # 人名称列表 names = ['宋江', '卢俊义', '吴用', '公孙胜', '关胜', '林冲', '秦明', '呼延灼', '花荣', '柴进', '李应', '朱仝', '鲁智深', '武松', '董平', '张清', '杨志', '徐宁', '索超', '戴宗', '刘唐', '李逵', '史进', '穆弘', '雷横', '李俊', '阮小二', '张横', '阮小五', '张顺', '阮小七', '杨雄', '石秀', '解珍', '解宝', '燕青', '朱武', '黄信', '孙立', '宣赞', '郝思文', '韩滔', '彭玘', '单廷珪', '魏定国', '萧让', '裴宣', '欧鹏', '邓飞', '燕顺', '杨林', '凌振', '蒋敬', '吕方', '郭盛', '安道全', '皇甫端', '王英', '扈三娘', '鲍旭', '樊瑞', '孔明', '孔亮', '项充', '李衮', '金大坚', '马麟', '童威', '童猛', '孟康', '侯健', '陈达', '杨春', '郑天寿', '陶宗旺', '宋清', '乐和', '龚旺', '丁得孙', '穆春', '曹正', '宋万', '杜迁', '薛永', '施恩', '李忠', '周通', '汤隆', '杜兴', '邹渊', '邹润', '朱贵', '朱富', '施琅', '李立', '杨瑞', '赵云', '段景住'] # 词频统计 word_count = {} for word in words: if word in names: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 # 生成词云图 wc = WordCloud(background_color='white', font_path='msyh.ttc', width=800, height=600) wc.generate_from_frequencies(word_count) # 显示词云图 plt.imshow(wc, interpolation='bilinear') plt.axis('off') plt.show() ``` 运行代码后,就可以得到词云图了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值