剪力墙又称抗风墙、抗震墙或结构墙。
房屋或构筑物中主要承受风荷载或地震作用引起的水平荷载和竖向荷载(重力)的墙体,防止结构剪切(受剪)破坏。又称抗震墙,一般用钢筋混凝土做成。
它分平面剪力墙和筒体剪力墙。
平面剪力墙用于钢筋混凝土框架结构、升板结构、无梁楼盖体系中。为增加结构的刚度、强度及抗倒塌能力,在某些部位可现浇或预制装配钢筋混凝土剪力墙。
现浇剪力墙与周边梁、柱同时浇筑,整体性好。
筒体剪力墙用于高层建筑、高耸结构和悬吊结构中 ,由电梯间、楼梯间、设备及辅助用房的间隔墙围成,筒壁均为现浇钢筋混凝土墙体,其刚度和强度较平面剪力墙可承受较大的水平荷载。
墙根据受力特点可以分为承重墙和剪力墙,前者以承受竖向荷载为主,如砌体墙;后者以承受水平荷载为主。在抗震设防区,水平荷载主要由水平地震作用产生,因此剪力墙有时也称为抗震墙。
按结构材料可以分为钢板剪力墙、钢筋混凝土剪力墙和配筋砌块剪力墙。其中以钢筋混凝土剪力墙最为常用。
一般按照剪力墙上洞口的大小、多少及排列方式,将剪力墙分为以下几种类型:
整体墙
没有门窗洞口或只有少量很小的洞口时,可以忽略洞口的存在,这种剪力墙即称为整体剪力墙,简称整体墙。
当门窗洞口的面积之和不超过剪力墙侧面积的15%,且洞口间净距及孔洞至墙边的净距大于洞口长边尺寸时,即为整体墙。
小开口整体墙
门窗洞口尺寸比整体墙要大一些,此时墙肢中已出现局部弯矩,这种墙称为小开口整体墙。
连肢墙
剪力墙上开有一列或多列洞口,且洞口尺寸相对较大,此时剪力墙的受力相当于通过洞口之间的连梁连在一起的一系列墙肢,故称连肢墙。
框支剪力墙
当底层需要大空间时,采用框架结构支撑上部剪力墙,就形成框支剪力墙。在地震区,不容许采用纯粹的框支剪力墙结构。
壁式框架
在连肢墙中,如果洞口开的再大一些,使得墙肢刚度较弱、连梁刚度相对较强时,剪力墙的受力特性已接近框架。由于剪力墙的厚度较框架结构梁柱的宽度要小一些,故称壁式框架。
开有不规则洞口的剪力墙
有时由于建筑使用的要求,需要在剪力墙上开有较大的洞口,而且洞口的排列不规则,即为此种类型。
需要说明的是,上述剪力墙的类型划分不是严格意义上的划分,严格划分剪力墙的类型还需要考虑剪力墙本身的受力特点。
根据受力性能不同,可分为以下几种:
独立墙肢、整体小开口剪力墙、整截面剪力墙、壁式框架、连肢剪力墙
剪力墙结构随着类型和开洞大小的不同,计算方法和计算简图也不同。
整体墙和小开口整体墙的计算简图基本上是单根竖向悬臂杆,计算方法按材料力学公式(对整体墙不修正,对小开口整体墙修正)计算。其他类型剪力墙,其计算简图均无法用单根竖向悬臂杆代表,而应按能反映其性态的结构体系计算。
1·、 整体剪力墙
对于整体剪力墙,在水平荷载作用下,根据其变形特征(截面变形后仍符合平面假定),可视为一整体的悬臂弯曲杆件,用材料力学中悬臂梁的内力和变形的基本公式进行计算。
(1) 内力计算
整体墙的内力可按上端自由,下端固定的悬臂构件,用材料力学公式,计算其任意截面的弯矩和剪力。总水平荷载可以按各片剪力墙的等效抗弯刚度分配,然后进行单片剪力墙的计算。剪力墙的等效抗弯刚度(或叫等效惯性矩)就是将墙的弯曲、剪切和轴向变形之后的顶点位移,按顶点位移相等的原则,折算成一个只考虑弯曲变形的等效竖向悬臂杆的刚度。
(2) 位移计算
整体墙的位移,如墙顶端处的侧向位移,同样可以用材料力学的公式计算,但由于剪力墙的截面高度较大,故应考虑剪切变形对位移的影响。当开洞时,还应考虑洞口对位移增大的影响。
2、 小开口整体剪力墙
小开口墙是指门窗洞口沿竖向成列布置,洞口的总面积虽超过墙总面积的15%,但仍属于洞口很小的开孔剪力墙。
通过实验发现,小开口剪力墙在水平荷载作用下的受力性能接近整体剪力墙,其截面在受力后基本保持平面,正应力分布图形也大体保持直线分布,各墙肢中仅有少量的局部弯矩;沿墙肢高度方向,大部分楼层中的墙肢没有反弯点。
在整体上,剪力墙仍类似于竖向悬臂杆件。就为利用材料力学公式计算内力和侧移提供了前提,再考虑局部弯曲应力的影响,进行修正,则可解决小开口剪力墙的内力和侧移计算。
首先将整个小开口剪力墙作为一个悬臂杆件,按材料力学公式算出标高处的总弯矩、总剪力和基底剪力。
其次,将总弯矩分为两部分:1)产生整体弯曲的总弯矩(占总弯矩的85%),2)产生部弯曲的总弯矩(占15%)。
3、 双肢剪力墙
联肢墙由于门窗洞口尺寸较大,墙截面上的正应力不再成直线分布其受力和变形发生了变化,墙肢的线刚度比连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较显著,仅在少数层内墙肢出现反弯点,故需采用相应方法分析。
墙面上开有一排洞口的墙称双肢墙;当开有多排洞口时,称多肢墙。
双肢墙由于连系梁的连结,而便双肢墙结构在内力分析时成为一个高次超静定的问题。为了简化计算,一般可用解微分方程的办法(连续连杆法)计算。
4、 多肢剪力墙
具有多于一排且排列整齐的洞口时,就成为多肢剪力墙。多肢墙也可以采用连续连杆法求解,基本假定和基本体系取法都和双肢墙类似。
由于墙肢及洞口数目比双肢墙多,因此沿竖向切口的基本未知量将相应增多。
在每个连梁切口处建立一个变形协调方程,则可建立k个微分方程。要注意,在建立第个切口处协调方程时,除了跨连梁内力影响外,还要考虑第-1跨连梁内力和第1+1跨连梁内力对墙肢的影响,这是与双肢剪力墙的一个明显区别。