一、pom.xml
<!-- 机器学习包 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
二、api使用
package cn.hhb.spark.mllib
import org.apache.spark.SparkConf
/**
*向用户推荐商品
*/
import org.apache.spark.mllib.recommendation.{ALS, Rating}
import org.apache.spark.{SparkConf, SparkContext}
// $example off$
object RecommendationExample2 {
def main(args: Array[String]) {
var conf = new SparkConf()
.setAppName("RecommendationExample2")
.setMaster("local[4]")
.set("spark.testing.memory", "2147480000")
val sc = new SparkContext(conf)
val data = sc.textFile("c://test.data")
//变换成rationg(评分)对象
val ratings = data.map(_.split(',') match { case Array(user, item, rate) =>
Rating(user.toInt, item.toInt, rate.toDouble)
})
//发生购买行为(评分)数据
val realData = ratings.map( t=>(t.user,t.product) )
// Build the recommendation model using ALS
val rank = 10
val numIterations = 10
//模型,举证分解模型
val model = ALS.train(ratings, rank, numIterations, 0.01)
val usersProducts = sc.makeRDD(Array((1,1), (2,1)))
//笛卡尔积
// val allUsers = sc.makeRDD(Array(1,2,3,4))
// val allProduct = sc.makeRDD(Array(1,2,3,4))
// val userProducts = allUsers.cartesian(allProduct)
// val unbuy = userProducts.subtract(realData)
// unbuy.collect().foreach(println)
//预测评分.
// val predictions = model.predict(unbuy)
val predictions = model.predict(usersProducts)
predictions.collect().foreach(println)
}
}

565

被折叠的 条评论
为什么被折叠?



