python中如何画出决策树_使用Python绘制决策树

决策树为字典格式,示例如下:

{'tearRate': {'reduced': 'no lenses', 'normal': {' astigmatic': {'yes': {' prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic': 'no lenses', 'young': 'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre': 'soft', 'presbyopic': {' prescript': {'hyper': 'soft', 'myope': 'no lenses'}}, 'young': 'soft'}}}}}}

绘制决策树代码

import matplotlib.pyplot as plt

def getNumLeafs(myTree):

# 初始化树的叶子节点个数

numLeafs = 0

# myTree.keys()获取树的非叶子节点'no surfacing'和'flippers'

# list(myTree.keys())[0]获取第一个键名'no surfacing'

firstStr = list(myTree.keys())[0]

# 通过键名获取与之对应的值,即{0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}

secondDict = myTree[firstStr]

# 遍历树,secondDict.keys()获取所有的键

for key in secondDict.keys():

# 判断键是否为字典,键名1和其值就组成了一个字典,如果是字典则通过递归继续遍历,寻找叶子节点

if type(secondDict[key]).__name__ == 'dict':

numLeafs += getNumLeafs(secondDict[key])

# 如果不是字典,则叶子结点的数目就加1

else:

numLeafs += 1

# 返回叶子节点的数目

return numLeafs

def getTreeDepth(myTree):

# 初始化树的深度

maxDepth = 0

# 获取树的第一个键名

firstStr = list(myTree.keys())[0]

# 获取键名所对应的值

secondDict = myTree[firstStr]

# 遍历树

for key in secondDict.keys():

# 如果获取的键是字典,树的深度加1

if type(secondDict[key]).__name__ == 'dict':

thisDepth = 1 + getTreeDepth(secondDict[key])

else:

thisDepth = 1

# 去深度的最大值

if thisDepth > maxDepth: maxDepth = thisDepth

# 返回树的深度

return maxDepth

# 绘图相关参数的设置

def plotNode(nodeTxt, centerPt, parentPt, nodeType):

# annotate函数是为绘制图上指定的数据点xy添加一个nodeTxt注释

# nodeTxt是给数据点xy添加一个注释,xy为数据点的开始绘制的坐标,位于节点的中间位置

# xycoords设置指定点xy的坐标类型,xytext为注释的中间点坐标,textcoords设置注释点坐标样式

# bbox设置装注释盒子的样式,arrowprops设置箭头的样式

'''

figure points:表示坐标原点在图的左下角的数据点

figure pixels:表示坐标原点在图的左下角的像素点

figure fraction:此时取值是小数,范围是([0,1],[0,1]),在图的左下角时xy是(0,0),最右上角是(1,1)

其他位置是按相对图的宽高的比例取最小值

axes points : 表示坐标原点在图中坐标的左下角的数据点

axes pixels : 表示坐标原点在图中坐标的左下角的像素点

axes fraction : 与figure fraction类似,只不过相对于图的位置改成是相对于坐标轴的位置

'''

createPlot.ax1.annotate(nodeTxt, xy=parentPt, \

xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', \

va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

# 绘制线中间的文字(0和1)的绘制

def plotMidText(cntrPt, parentPt, txtString):

xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0] # 计算文字的x坐标

yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1] # 计算文字的y坐标

createPlot.ax1.text(xMid, yMid, txtString)

# 绘制树

def plotTree(myTree, parentPt, nodeTxt):

# 获取树的叶子节点

numLeafs = getNumLeafs(myTree)

# 获取树的深度

depth = getTreeDepth(myTree)

# firstStr = myTree.keys()[0]

# 获取第一个键名

firstStr = list(myTree.keys())[0]

# 计算子节点的坐标

cntrPt = (plotTree.xoff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yoff)

# 绘制线上的文字

plotMidText(cntrPt, parentPt, nodeTxt)

# 绘制节点

plotNode(firstStr, cntrPt, parentPt, decisionNode)

# 获取第一个键值

secondDict = myTree[firstStr]

# 计算节点y方向上的偏移量,根据树的深度

plotTree.yoff = plotTree.yoff - 1.0 / plotTree.totalD

for key in secondDict.keys():

if type(secondDict[key]).__name__ == 'dict':

# 递归绘制树

plotTree(secondDict[key], cntrPt, str(key))

else:

# 更新x的偏移量,每个叶子结点x轴方向上的距离为 1/plotTree.totalW

plotTree.xoff = plotTree.xoff + 1.0 / plotTree.totalW

# 绘制非叶子节点

plotNode(secondDict[key], (plotTree.xoff, plotTree.yoff), cntrPt, leafNode)

# 绘制箭头上的标志

plotMidText((plotTree.xoff, plotTree.yoff), cntrPt, str(key))

plotTree.yoff = plotTree.yoff + 1.0 / plotTree.totalD

# 绘制决策树,inTree的格式为{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

def createPlot(inTree):

# 新建一个figure设置背景颜色为白色

fig = plt.figure(1, facecolor='white')

# 清除figure

fig.clf()

axprops = dict(xticks=[], yticks=[])

# 创建一个1行1列1个figure,并把网格里面的第一个figure的Axes实例返回给ax1作为函数createPlot()

# 的属性,这个属性ax1相当于一个全局变量,可以给plotNode函数使用

createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)

# 获取树的叶子节点

plotTree.totalW = float(getNumLeafs(inTree))

# 获取树的深度

plotTree.totalD = float(getTreeDepth(inTree))

# 节点的x轴的偏移量为-1/plotTree.totlaW/2,1为x轴的长度,除以2保证每一个节点的x轴之间的距离为1/plotTree.totlaW*2

plotTree.xoff = -0.5 / plotTree.totalW

plotTree.yoff = 1.0

plotTree(inTree, (0.5, 1.0), '')

plt.show()

运行代码

# 设置画节点用的盒子的样式

decisionNode = dict(boxstyle="sawtooth", fc="0.8")

leafNode = dict(boxstyle="round4", fc="0.8")

# 设置画箭头的样式

arrow_args = dict(arrowstyle="

tree_dict = {'tearRate': {'reduced': 'no lenses', 'normal': {' astigmatic': {'yes': {' prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic': 'no lenses', 'young': 'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre': 'soft', 'presbyopic': {' prescript': {'hyper': 'soft', 'myope': 'no lenses'}}, 'young': 'soft'}}}}}}

createPlot(tree_dict)

效果图

217ba06edf701d96dea314c55049fa30.png

决策树构建示例

决策树实战——预测隐形眼睛类型

  • 3
    点赞
  • 16
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

沉迷苏志燮

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值